Impact of memory size on ECM and E^2CM

Single-Hop High Degree Hotspot

Cyriel Minkenberg & Mitch Gusat
IBM Research GmbH, Zurich
May 10, 2007
Targets

- Measure mean flow completion time, number of flows completed, number of frames dropped
 - Exponential and Pareto flow size distributions
 - Mean = 60 KB/flow (40 frames, 48 us), 75% load
 - Actual Pareto mean flow size = 17.2 KB, load = 57%
 - Traffic pattern read from trace file
- PAUSE on/off
- BCN(0,0) on/off
Output-Generated Single-Hop High HSD

- All nodes: Uniform destination distribution, load = 85% (8.5 Gb/s)
- Node 1 service rate = 10%
Simulation Setup & Parameters (same as before)

- **Traffic**
 - Bernoulli
 - Uniform destination distribution (to all nodes except self)
 - Fixed frame size = 1500 B

- **Scenario**
 1. Single-hop output-generated hotspot

- **Switch**
 - Radix N = 16
 - \(M = [75, 150, 300] \) KB/port
 - Link time of flight = 1 us
 - Partitioned memory per input, shared among all outputs
 - No limit on per-output memory usage
 - PAUSE enabled or disabled
 - Applied on a per input basis based on local high/low watermarks
 - \(\text{watermark}_{\text{high}} = M - \text{rtt} \times \text{bw} \) KB
 - \(\text{watermark}_{\text{low}} = \text{watermark}_{\text{high}} - 10 \) KB
 - If disabled, frames dropped when input partition full

- **Adapter**
 - Per-node virtual output queuing, round-robin scheduling
 - No limit on number of rate limiters
 - Ingress buffer size = infinite, round-robin VOQ service
 - Egress buffer size = 150 KB
 - PAUSE enabled
 - \(\text{watermark}_{\text{high}} = 150 - \text{rtt} \times \text{bw} \) KB
 - \(\text{watermark}_{\text{low}} = \text{watermark}_{\text{high}} - 10 \) KB

- **ECM**
 - \(W = 2.0 \)
 - \(Q_{eq} = M/4 \)
 - \(G_{d} = 0.5 / ((2*W+1)*Q_{eq}) \)
 - \(G_{i0} = (R_{\text{link}} / R_{\text{unit}}) * ((2*W+1)*Q_{eq}) \)
 - \(G_{i} = 0.1 * G_{i0} \)
 - \(P_{\text{sample}} = 2\% \) (on average 1 sample every 75 KB)
 - \(R_{\text{unit}} = R_{\text{min}} = 1 \) Mb/s
 - BCN_MAX enabled, threshold = \(M \) KB
 - BCN(0,0) dis/enabled, threshold = \(4*M \) KB
 - **Drift enabled**

- **E^2CM (per-flow)**
 - \(W = 2.0 \)
 - \(Q_{eq,\text{flow}} = M/20 \) KB
 - \(G_{d,\text{flow}} = 0.5 / ((2*W+1)*Q_{eq,\text{flow}}) \)
 - \(G_{i,\text{flow}} = 0.005 * (R_{\text{link}} / R_{\text{unit}}) / ((2*W+1)*Q_{eq,\text{flow}}) \)
 - \(P_{\text{sample}} = 2\% \) (on average 1 sample every 75 KB)
 - \(R_{\text{unit}} = R_{\text{min}} = 1 \) Mb/s
 - BCN_MAX enabled, threshold = \(M/5 \) KB
 - BCN(0,0) dis/enabled, threshold = \(4*M/5 \) KB
Aggregate throughput

- ECM w/o PAUSE
- ECM w/ PAUSE
- E²CM w/o PAUSE
- E²CM w/ PAUSE
Hot port throughput

ECM w/o PAUSE

E2CM w/o PAUSE

ECM w/ PAUSE

E2CM w/ PAUSE
Hot port queue length

ECM w/o PAUSE

ECM w/ PAUSE

E²CM w/o PAUSE

E²CM w/ PAUSE
Number of frames dropped (no PAUSE)

- **E^2CM** drops fewer frames
When either PAUSE or BCN(0,0) are enabled numbers are virtually identical

Without PAUSE and BCN(0,0) E²CM tends to do somewhat better
Mean flow completion time

- Larger memory \Rightarrow shorter flow completion time
- ECM with PAUSE tends to perform worst
- With largest memory, E^2CM has about 20% lower FCT than ECM
Conclusions

• Chairman has raised the issue of more realistic (shallow) onchip buffers
 - Will our CM schemes still work - and how well?

• Findings: Baseline ECM and E2CM show robust performance even w/ reduced memory
 - Resilience: both loops have sufficient stability phase margin built-in

• Performance is comparable, E2CM sometimes better