Impact of memory size on ECM and E²CM

Single-Hop High Degree Hotspot

Cyriel Minkenberg & Mitch Gusat
IBM Research GmbH, Zurich
May 10, 2007
Targets

• Determine impact of memory size on performance
 - Simulated sizes: 75, 150, 300 KB per port
 - ECM, E²CM
 - PAUSE on/off
 - BCN(0,0) on/off

• Metrics
 - Aggregate & hot port throughput
 - Hot queue length
 - Mean flow completion time, number of flows completed
 - Number of frames dropped
Output-Generated Single-Hop High HSD

- All nodes: Uniform destination distribution, load = 85% (8.5 Gb/s)
- Node 1 service rate = 10%
Simulation Setup & Parameters (same as before)

- **Traffic**
 - Bernoulli
 - Uniform destination distribution (to all nodes except self)
 - Fixed frame size = 1500 B

- **Scenario**
 1. Single-hop output-generated hotspot

- **Switch**
 - Radix N = 16
 - M = [75, 150, 300] KB/port
 - Link time of flight = 1 us
 - Partitioned memory per input, shared among all outputs
 - No limit on per-output memory usage
 - PAUSE enabled or disabled
 - Applied on a per input basis based on local high/low watermarks
 - watermark$_{high} = M - \text{rtt} \times \text{bw}$ KB
 - watermark$_{low} = M - \text{rtt} \times \text{bw}$ KB
 - If disabled, frames dropped when input partition full

- **Adapter**
 - Per-node virtual output queuing, round-robin scheduling
 - No limit on number of rate limiters
 - Ingress buffer size = infinite, round-robin VOQ service
 - Egress buffer size = 150 KB
 - PAUSE enabled
 - watermark$_{high} = 150 - \text{rtt} \times \text{bw}$ KB
 - watermark$_{low} = \text{watermark}_{high} - 10$ KB

- **ECM**
 - W = 2.0
 - Q$_{eq} = M/4$
 - $G_d = 0.5 / ((2*W+1) \times Q_{eq})$
 - $G_{i0} = (R_{link} / R_{unit}) \times ((2*W+1) \times Q_{eq})$
 - $G_i = 0.1 \times G_{i0}$
 - $P_{sample} = 2\%$ (on average 1 sample every 75 KB)
 - $R_{unit} = R_{min} = 1$ Mb/s
 - BCN_MAX enabled, threshold = M KB
 - BCN(0,0) dis/enabled, threshold = 4* M KB
 - Drift enabled

- **E^2CM (per-flow)**
 - W = 2.0
 - Q$_{eq,flow} = M/20$ KB
 - $G_{d,flow} = 0.5 / ((2*W+1) \times Q_{eq,flow})$
 - $G_{i,flow} = 0.005 \times (R_{link} / R_{unit}) / ((2*W+1) \times Q_{eq,flow})$
 - $P_{sample} = 2\%$ (on average 1 sample every 75 KB)
 - $R_{unit} = R_{min} = 1$ Mb/s
 - BCN_MAX enabled, threshold = M/5 KB
 - BCN(0,0) dis/enabled, threshold = 4* M/5 KB
Aggregate throughput

- ECM w/o PAUSE
- ECM w/ PAUSE
- E²CM w/o PAUSE
- E²CM w/ PAUSE
Hot port throughput

![Graphs showing throughput comparison]

IBM Research GmbH, Zurich
Hot port queue length

- ECM w/o PAUSE
- ECM w/ PAUSE
- E²CM w/o PAUSE
- E²CM w/ PAUSE
Number of frames dropped (no PAUSE)

- **E²CM drops fewer frames**

![Bar chart showing number of frames dropped for different values of M with and without (0,0) for ECM and E²CM. The chart compares the number of frames dropped at different M values: M = 75K w/o (0,0), M = 75K w/ (0,0), M = 150K w/o (0,0), M = 150K w/ (0,0), M = 300K w/o (0,0), and M = 300K w/ (0,0).]
When either PAUSE or BCN(0,0) are enabled numbers are virtually identical.
Without PAUSE and BCN(0,) E²CM tends to do somewhat better.
• Larger memory \(\Rightarrow\) shorter flow completion time
• ECM with PAUSE tends to perform worst
• With largest memory, \(E^2CM\) has about 20\% lower FCT than ECM
Conclusions

• Chairman has raised the issue of more realistic (shallow) on-chip buffers
 - Will our CM schemes still work - and how well?

• Findings: Baseline ECM and E2CM show robust performance even with reduced memory
 - Resilience: Both loops have sufficient stability phase margin built in

• Performance is comparable, E²CM sometimes better