CN-SIM: Discussion About Metrics

Davide Bergamasco

IEEE 802 Plenary Meeting
Orlando, FL
March 13th-14th, 2007
Agenda

- Clarifications on previous presentation
- Classification of metrics
- Acceptance criteria
Introduction

- At the last Interim Meeting in Monterey we agreed to gather the following metrics in our simulations (see au-thaler-CN-metrics-070124.pdf):
 - Queue depth (Max, Avg, StdDev)
 - Time above highly congested point (TBD, time above Qsc, n * equilibrium point)
 - Packets dropped in network
 - % time paused
 - Aggregate throughput for congested flows
 - Aggregate throughput for innocent flows
 - Signaling overhead
 - Fairness
 - Completion time for innocent flows
 - Completion time for congested flows
 - Convergence time
 - Reaction to short flows, flow length boundaries for benefit, flow length boundaries that cause harm?
Flow Completion Time

- Definition of Flow:
 - Ordered sequence of frames originated by a source node and addressed to a destination node

- Definition of Flow Completion Time (FCT):
 - **Ideal**: Difference between the arrival time of the last BIT and the departure time of the first BIT of a flow.
 - **Approximate**: Difference between the arrival time of the last FRAME and the departure time of the first FRAME of a flow.

- The FCT can be computed if all the frames of flow are received by the destination node.

- When Port Scavenging is used, frames may be dropped, effectively compromising flows and FCT computation.

- Proposal:
 - Compute FCT only for uncompromised flows (“good flows”)
 - Count number of compromised flows (“bad flows”)

EDCS-577512 Cisco Public
Flow Completion Time

- When PAUSE is used, frames cannot be dropped. Hence FTC can be computed for all flows.
- However, FCT may be compromised because of blocking inside NICs.
Flow Completion Time

- Proposal
 - For external flow control (i.e., PAUSE triggered), nothing can be done, so just live with it
 - For internal flow control, block only if a flow is mapped to a RL whose queue exceeds a certain threshold (i.e., selective flow control)
 - This complicates the packet architecture because multiple traffic generators (or a “multi-threaded” traffic generator) are required within an aggregate node
Convergence Time

- In Monterey, Bruce Kwan presented some very good material regarding the estimation of transient duration (au-sim-kwan-transient-duration-012407.pdf)

- The “Initial Data Deletion” methodology was used to determine when the initial transient was over

- Although extremely accurate, such methodology is quite labor-intensive and time-consuming

Proposal

- Use a far less accurate but simpler transient estimation technique commonly used in electronics and control theory to conduct quick assessments

- Use the Initial Data Deletion methodology to “dig deeper”, if needed
Convergence Time

Queue Settling Time t_s

$t_s \in [0, T]$ such that

$|Q_{\text{len}}(t) - Q_{\text{eq}}| < \alpha Q_{\text{eq}}$

for any $t > t_s$

Where $\alpha \in [0, \frac{1}{2}]$
Convergence Time

Queue Settling Time t_s

$t_s \in [0, T]$ such that

$Q_{len}(t) < Q_{sc} \land \land$

$Q_{len}(t) > 1$ MTU

for any $t > t_s$
Metrics Classification

- Tier 1
 - Used to assess conformance with PAR objectives
 - Performance Related
 - Measurable with simulations
 - Implementation Related
 - Some measurable, others require judgment calls
- Tier 2
 - Used to achieve a better understanding of a proposal
 - Differentiate further in case of a tie based on Tier 1 metrics
Tier 1 Metrics

- **Performance Metrics**
 - Aggregate throughput
 - Flow completion time (Max, Avg, Min, Stddev)
 - Packets dropped / % time paused
 - Signaling overhead
 - Queue depth (Max, Avg, Stddev)
 - Bottleneck link utilization

- **Implementation Metrics**
 - Implementation complexity
 - Processing costs
 - IP cost
 - Support costs
 - Amount of tuning
 - Sensitivity to tuning
 - Effects of wrong tuning
 - Sensitivity to loss of signal
 - Envelope bytes (max frame size implications)
Tier 2 Metrics

- Additional Performance Metrics
 - Convergence time
 - Time above severe congestion watermark
 - Fairness
 - Throughput of congested flows
 - Throughput of innocent flows
 - Completion time of congested flows
 - Completion time of innocent flows
Acceptance Criteria

- Metrics alone allow us to merely compare proposals
- Our goal is different. Chose the proposal which:
 - Does a “good enough” job at controlling congestion as per the PAR objectives
 - With the lowest
 - Implementation costs
 - Deployment costs
- Acceptance Criteria is the tool that should tell us if the job is “good enough”
Acceptance Criteria

- For some metrics, acceptance criteria are trivial:
 - Bottleneck link throughput > 85%
 - Queue length bounded within a certain band

- For others, it’s not so trivial:
 - Flow completion time ???
 - Aggregate throughput ???

- Shall we have a brainstorming on this?