PBB-TE

Zehavit Alon IEEE Plenary Meeting July 2007

PAR Text for Project Scope

This amendment will support provisioning systems that explicitly select traffic engineered paths within Provider Backbone Bridge Networks (P802.1ah) by

- allowing a network operator to disable unknown destination address forwarding and source address learning for administratively selected VLAN Identifiers,
- while allowing other network control protocols to dynamically determine active topologies for other services.
- These interoperable capabilities will be supported
 - by SNMP MIB management of individual bridges,
 - by extensions to the other control protocols specified in this standard,
 - by the use of CFM with the addresses and VLAN Identifiers that specify traffic engineered connections,
 - and by 1:1 path protection switching capable of load sharing.
- This project will not take account of multi-domain networks.

Scope of the Project Insights

- Provisioned TE P-t-P trunks co-exist with dynamically learnt non-TE paths (conventional PBB).
 The VID space is pre-divided between PBB-TE and conventional PBB
- TE trunks are MP-t-P-based unidirectional paths which share a common <VID, DA-MAC> tuple.
 - PBBs hold only forwarding information.
 - The source MAC address, which is part of the unique trunk identifier, is NOT kept in the FDB.
 - The preservation of the source MAC address in the packet has implications for fault and performance management.

Scope of the Project Insights (cont'd.)

- TE trunks can be provisioned only in one domain (as inter-domain is out of the scope of the approved PAR).
 PEs are only IB-BEB (no support for I-BEB and B-BEB).
- CFM can be extended to support unicast CCM messages.
 Other CFM extensions are out of the scope of the approved PAR.
- 1:1 trunk protection switching capable of load sharing will be defined
- PBB-TE should be implemented in a closed island.
 Installed PB/PBB nodes do not support PBB-TE, hence they will perform learning, MSTP and unknown flooding on all VIDs.

G.8031 as a Reference for Protection Switching

G.8031 as a Reference Facts

• G.8031 provides the following protection schemes:

<u>- 1+1</u>

- for unidirectional trunks
- for bi-directional trunks
- - for bidirectional trunks
- G.8031 defines the specific OAM APS for Ethernet linear protection.

G.8031: 1+1 Unidirectional Protection Switching

- Traffic is copied and fed to both working and protection trunks.
- The selection is made
 at the sink based on
 some predetermined
 criteria, such as defect
 indication, management
 request, etc.
- APS is optional.

G.8031: 1+1 Bi-Directional Protection Switching

- Traffic is copied and fed to both working and protection trunks.
- The selection is made at the sink based on some predetermined criteria, such as defect indication, management request, etc.
- APS is <u>mandatory</u> in order to force the selectors in both directions to select the same entity

G.8031: 1:1 Bi-Directional Protection Switching

- Traffic is transmitted on the working trunk only (using a selector bridge at the source).
- The selector at the sink selects the trunk which carries the traffic.
- APS is <u>mandatory</u> in order to force the selectors in both directions to select the same entity

G.8031: Insights

• 1+1 is not is the scope of the PBB-TE PAR

Requires additional functionality, such as traffic replication at the source, a traffic selector in the sink, defect indication regarding the protection switching process, etc.

- 1:1 is possible only for bi-directional trunks
 - A bi-directional PBB-TE trunk can be provisioned by two unidirectional trunks which would constitute one logical bi-directional trunk.
 The correct behavior depends exclusively on the provisioning of the network and the right connectivity.
 - APS is not in the scope of the PBB-TE PAR.
 Still, OAM CCM may be considered as an interim alternative to APS for coordination between the source and the sink.

Protection Switching in PBB-TE

Protection Switching in PBB-TE

- Quote From PBB-TE PAR: 1:1 Path Protection Switching Capable of Load Sharing
- 1:1 protection switching requires that the protection state be coordinated between the source and the sink.

802.1ag OAM CCM with RDI can be used as an interim solution.

Possible Solutions for 1:1 Protection Switching 1:1 Unidirectional Protection

- Reminder: not supported by G.8031
- Applied to unidirectional trunks
- Functional behavior:
 - In-band unicast OAM CCM messages are sent from the source to the sink.
 Unicast OAM CCM is needed since VLAN is local to a specific destination;
 multicast will be sent on all trunks with the same VLAN.
 - Defects are detected by the sink and are indicated to the source using CCM with RDI:
 - Via native bridged multicast OAM CCM (on a PBB VLAN space)
 Issue: Can MA support multiple VLANs?
 - Via another trunk from the sink to the source (must be protected)
 - Protection switching is performed by the source when a CCM with RDI is received from the sink.

Possible Solutions for 1:1 Protection Switching Bi-directional Protection

- Two unidirectional trunks (between the same two bridge ports) can constitute a logical Ethernet bi-directional trunk.
 Again, the correct behavior depends on the provisioning of the network and the right connectivity.
- Functional behavior:
 - In-band unicast OAM CCMs are sent on each unidirectional trunk.
 - Defects are detected by the sink, and are indicated to the source using CCM messages with RDI.
 - Protection switching is performed by the source if it does not receive three consecutive CCM messages, or when it gets a CCM message with RDI.

Conclusions

1:1 bi-directional protection is the most appropriate.

- Further analysis is needed to determine the relationship between the paths of both unidirectional trunks:
 - Should they share the same path? If so, which mechanism would ensure that the same route would be used for both directions?
 - Or , should the source of one unidirectional trunk be the sink of the other unidirectional trunk?
 - Or, should there be no restrictions on the unidirectional trunks?
- Should protection switching support revertvie/non-revertive modes?
- Should protection switching support manual switchover?

Conclusions (cont'd.)

- Is the protection switching mechanism based on CCM satisfactory, or should we consider OAM APS for the long term?
- 802.1ag defines MA to verify the integrity of a single service instance.
 Should we enhance the definition of the MA so that it will verify the integrity of a trunk? A bi-directional trunk?

Thank You

zehavit.alon@nsn.com

