
802.1aq Link State Protocol and Loop Prevention

Dave Allan dallan@nortel.com

Jerome Chiabaut chiabaut@nortel.com
Nigel Bragg nbragg@nortel.com
Don Fedyk dwfedyk@nortel.com

mailto:dallan@nortel.com
mailto:chiabaut@nortel.com
mailto:nbragg@nortel.com
mailto:dwfedyk@nortel.com

2 IEEE 802.1 January 2008 Interim

From aq-farkas-loop-prevention-1107

Ingress checking
> Frames not arriving on the shortest path from the Source Bridge are discarded
> Makes the tree directed
> Good for loop prevention in most cases
> Transient loops may appear
> Ingress filtering has to be modified
> Spreading of frames confined to the traffic trapped in loop when it closed

• Loop’s only valid source is itself

TTL (hop-count)
> Looped frames are discarded after a while
> Spreading of multicast frames lasts shorter but not eliminated

• because the duration of looping of an individual frame is bounded,
• however, traffic can continue to enter loop after it has formed

> New field in header

3 IEEE 802.1 January 2008 Interim

Multicast without Ingress Check or
consistent tie-breaking

B C

DE

R

C=1

C=1

C=10

C
=1

C=1

B C

DE

R

C=1

C=1

C=10
C

=1

C=1

B C

DE

R

C=1

C=1

C=10

C
=1

C=1

X X

B&D are leaves on
multicast tree rooted at R

Updated
bridges

C=1 C=1

Tie breaking of BCD vs.
BED is not consistent

This discussion focuses exclusively on looping of multicast frames :
> this has more serious consequences and suppression is more

challenging than the looping of unicast frames.
The combination of promiscuous receipt of multicast frames, and

inconsistent tie-breaking means a single failure can produce a loop
> The amount of traffic looping is Σ offered load for duration of the loop

4 IEEE 802.1 January 2008 Interim

Minimum Complexity of a loop with Ingress
Check

> The minimum number of simultaneous topology changes to produce a
loop with Ingress Check & consistent tie breaking is two

> If an individual node is not allowed to have two different views of the
network simultaneously, a loop produced by two topology changes will
have at least four nodes in it

> Why?
• Two or more paths must be stitched together to form a loop

• Without loss of generality, assume two, non-looping, paths
• These paths can’t agree all the way around the loop

• There must be a break in each of them since they are acyclic
• There must be section of the loop which is unique to each path

• This section closes the loop when added to the other path
• These sections must be joined by common sections:

• section of path1 common section section of path2 common section
• The two common sections are distinct and each has a node at each end

5 IEEE 802.1 January 2008 Interim

Transient loop example (min. complexity)
(from aq-farkas-loop-prevention-1107)

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10
C

=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X X

Generalized description:
Minimum of two ~simultaneous topology changes,

one to close the loop,
one to relocate the shortest path from the loop to the root

A minimum of two sets of a minimum of two nodes each,
FIB in one set of nodes (C&D) corresponds to a previous graph state,
FIB in one set of nodes (B&E) corresponds to a new graph state

Updated
bridges

6 IEEE 802.1 January 2008 Interim

> This four-node loop example may be generalised to a loop
of arbitrary size :
• by adding “padding” nodes into the sections;
• each node must share the topology view of its neighbours for the loop

to form (previous or new graph state)

> Forming a three-node loop requires that each node has both a
different view of the topology, and an inconsistent view of the link
metrics round the loop :

We conclude that the 4-node loop is a useful model to work with
Summing these inequalities :- x + y + z > 2 . (x + y + z) Hmm . . .

C=x

More on loops

C

D

B
R

XX

C=yC=z

y > x + z

C

D

B
R

z > x + y

C=x

C=yC=z

C

D

B
R

X

x > y + z

C=x

C=yC=z

7 IEEE 802.1 January 2008 Interim

It is not just four nodes and two views

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X X

Σ of metrics of the “slow to
converge” portion of the

network needs to be greater
than the rest of the loop,

CD > DE+EB+BC

C=1 C=1

The point of ingress from the root (the shortest path
to the root) needs to shift from the last node in the
“fast converging” section of the loop to last node in

the “slow converging” section (viewed from the POV
of direction of looping)

Ingress to each portion of the
loop needs to be a branch on

the multicast tree

8 IEEE 802.1 January 2008 Interim

How much traffic was trapped in the loop?

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X X

Traffic stopped
flowing when RB

failed

Loop did not close until minimum of:
detection time of RB failure

+ propagation time from B to E
+ convergence time
(assuming that the EB link becomes
available as the RB failure is detected)

Traffic will only be trapped if
loop RTT time > detection +
notification + convergence

time for B&E for both RB and
EB link state changes

Loop breaks when
D accepts traffic

from R OR C
stops sending to D

9 IEEE 802.1 January 2008 Interim

How much traffic was trapped in the loop?

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10
C

=1

C=5

X

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X

Any convergence on intermediate state topology introduces either
Ingress Check blocking or no downstream FIB entry, further

diminishing the quantity of traffic that can be trapped

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

E discards
traffic from D

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X

B stops sending
anything still

buffered

E simply
consumes any

packets received

Transient loop

10 IEEE 802.1 January 2008 Interim

Concern

> We agree transient loop cases can exist
• But they have to be carefully contrived under Ingress Check

and even when they exist, they may be empty

> How do we make the network robust without over
engineering for contrived corner cases?

> Most synchronization proposals introduce complexity,
delay and additional state, and so may not be an
improvement over the status quo ?
• Neighbor checking
• Ordered convergence

> It does not seem sensible to penalise the response to
all topology changes, especially when we can further
mitigate the impact of corner cases

11 IEEE 802.1 January 2008 Interim

General Direction

> It is multiple near simultaneous events that produce loops

> We need to narrow the window of what constitutes
“simultaneous”

> We can define that window as the delta between
installation of loop closure state and installation of loop
blocking state
• Minimizing the variability in convergence times across the network

is a key technique in minimizing the duration of the window of
vulnerability

12 IEEE 802.1 January 2008 Interim

Sources of variability of convergence

> Network size
• Manifests itself in order of complexity of computation
• Manifests itself in delays in synchronization of link state databases due to

LSP propagation time

> Compute capability of individual nodes
• N2.logN amplifies the impact of deltas in compute power

> Quality of implementation
• Unstable software
• Poor algorithm implementation
• Slow transfer of FIB from control plane to bridging components
• Intermediate states in FIB installation

> Operational attributes
• Inconsistent application of hold off timers

13 IEEE 802.1 January 2008 Interim

Minimizing variability

> Do “break before make” by first converging unicast and
installing unicast MACs in the FIB (immediately enabling
SA-based Ingress Check) before performing multicast
computation
• The complexity of computing unicast shortest path is N.logN
• The complexity of computing multicast paths is N2.logN

> Result is:
• Minimal time to installing Ingress Check loop blocking state in FIBs
• Differences in compute power of nodes is mitigated
• Impact of network size on compute complexity and synchronization

is mitigated
• Many aspects of quality of implementation are mitigated

Loop blocking can be computed orders of magnitude faster than loop closing

14 IEEE 802.1 January 2008 Interim

Applied to the example…

Both B & E must learn of both topology changes (RB & EB), and
converge both unicast and multicast before:

1. D learns of either change and converges unicast
2. C learns of EB change only and converges unicast and multicast
3. C learns of RB change only and converges unicast

> with only RB failed, C accepts from D for a transient loop to exist

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

B C

DE

R

C=1

C=1

C=10

C
=1

C=5

X

B C

DE

R

C=1

C=1

C=10
C

=1

C=5

X

X

D converges unicast
- Ingress Check filters

traffic from C

D converges multicast,
- Accepts from R
- Relays to E

15 IEEE 802.1 January 2008 Interim

Summary

> It requires multiple simultaneous topology changes combined with
variability of convergence to produce a transient loop
• Simultaneous being defined as “within a narrow window”
• Bounded by notification time plus unicast convergence time of loop

breakers
> A transient loop frequently will be empty

• Cut off from the source and drained before it actually closed
> “break before make” reduces the window size within which multiple

events can cause a transient loop
• Loop breaking computed much faster than loop closure
• Unicast FIB installed before multicast FIB for SA based ingress check

> “break before make” reduces the duration of existence of a transient
loop
• No multi-hop delay in ordered convergence or neighbor checks

	802.1aq Link State Protocol and Loop Prevention
	From aq-farkas-loop-prevention-1107
	Multicast without Ingress Check or consistent tie-breaking
	Minimum Complexity of a loop with Ingress Check
	Transient loop example (min. complexity) �(from aq-farkas-loop-prevention-1107)
	More on loops
	It is not just four nodes and two views
	How much traffic was trapped in the loop?
	How much traffic was trapped in the loop?
	Concern
	General Direction
	Sources of variability of convergence
	Minimizing variability
	Applied to the example…
	Summary

