MSRP Attribute Declaration, Propagation and Bandwidth Allocation

Craig Gunther (cgunther@harman.com)
16 September 2008
Topics

• MSRP Attribute Propagation
• Triggers for Bandwidth Reallocation
• Bandwidth Allocation Algorithm
• Listener Attribute Propagation
• Qat/Qav - What runs where?
• MSRPDU Talker Attributes
MSRP Attribute Propagation
MSRP Attribute Propagation

SR Station - Talker

Host Application

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

MAD_Join.request(TalkerAdvertise)

MSRPDU

PHYSICAL MEDIA (CAT-5e)

SR Station - Listener

Host Application

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

MAD_Join.indication(TalkerAdvertise)

MSRPDU

PHYSICAL MEDIA (CAT-5e)
Bridge MSRP Propagation
Talker’s Second Stream Fails

1. REGISTER_STREAM (StreamID) → Status update (Advertise)
2. REGISTER_STREAM (StreamID) → Status update (Advertise)
3. REGISTER_STREAM_ATTACH (StreamID) → Status update (Failed)
4. MSRPDU (TalkerAdvertise join)
5. MSRPDU (TalkerAdvertise join)
6. MSRPDU (TalkerAdvertise join)
7. MSRPDU (TalkerAdvertise join)
8. MSRPDU (TalkerAdvertise join)
9. MSRPDU (TalkerAdvertise join)
10. MSRPDU (TalkerAdvertise join)
Bridge Forwarding a Stream

SR Bridge

Host Application

MSRP Participant

MSRP (MRP Application)

Qav Queuing & Forwarding

MAP (MRP Attribute Propagation)

MAD (MRP Attribute Declaration)

MAD_Join.indication (TalkerAdvertise)

MAD_Join.request (ListenerReady)

MSRPDU

PHYSICAL MEDIA (CAT-5e)

MAD_Join.indication (TalkerAdvertise)

MAD_Join.request (ListenerReady)

MSRPDU

PHYSICAL MEDIA (CAT-5e)

MAD_Join.request (TalkerAdvertise)

MAD_Join.indication (ListenerReady)

MSRPDU

PHYSICAL MEDIA (CAT-5e)
Triggers for Bandwidth Reallocation
Bandwidth Reallocation

Actions that might cause a bandwidth allocation change

• TalkerAdvertise
• TalkerFailed
• ListenerReady
• ListenerReadyFailed
• ListenerAskingFailed
• Media bandwidth changed
Bandwidth Reallocation - 2

WARNINGS:

In normal operation you would expect to see Talker declarations registered before Listener declarations, although this is not a requirement.

You might also see unexpected interaction in MSRP attribute processing for a short period of time after a Spanning Tree reconfiguration.
Bandwidth Allocation Algorithm
Definitions & Notes

• Bandwidth reservation is done on the TX side
• Definition: Active Listener = Listener Ready or Listener Ready Failed (bandwidth will be consumed if this stream is Approved)
• On Non-shared media: Talker Advertise from another port is associated with Active Listener on the current port
• On Shared media: the Talker Advertise may also come from the current port (e.g. 802.11)
Definitions & Notes - 2

• Merging Listener Declarations:

<table>
<thead>
<tr>
<th>FIRST DECLARATION TYPE</th>
<th>SECOND DECLARATION TYPE</th>
<th>RESULTANT DECLARATION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>Ready</td>
<td>Ready</td>
</tr>
<tr>
<td></td>
<td>Ready Failed or Asking</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Failed</td>
<td></td>
</tr>
<tr>
<td>Ready Failed</td>
<td>Any</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Ready or Ready Failed</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Asking Failed</td>
<td>Asking Failed</td>
</tr>
</tbody>
</table>

Table 19-1 Listener Declaration Type Summation
Per-Port Bandwidth Analysis

• Do the following for each TX port (completing the analysis for each port before proceeding to the next port):
 – Create a list of Talker declarations from any other port that could be sent out this port
 – This list is divided into two sections:
 • Streams with Active Listeners on this port are at the top of the list
 • Streams without Active Listeners on this port are at the bottom of the list
 – Sort each section by Talker Rank + StreamID
Per-Port Bandwidth Analysis - 2

• Include the following information with each Talker declaration in the list:
 – Stream ID
 – Talker Attribute (Advertise or Failed)
 – Talker Traffic Class (A or B)
 – TSpec
 – Talker is on same port “flag” (True or False)
 • Bandwidth requirements double if True
 – Stream MAC DA
 – Stream VID
 – Approved/Disapproved “flag” (set by Qav)
Qav Bandwidth Analysis

• Ask Qav to do a Trial Reservation based on information in the list
 – Qav will set Approved/Disapproved flag
 – Qav may adjust Talker attribute

• Qav processes the list as follows:
 – Work from top of list to bottom
 – Calculate bandwidth requirements based on:
 • TSpec + additional media overhead
 • Double bandwidth requirement if Talker is also on this port
Qav Bandwidth Analysis - 2

• Qav continues processing as follows:
 – If bandwidth is not available for this stream with this traffic class, or attribute declaration is Talker Failed:
 • Flag list entry as Disapproved
 • Set attribute in list to Talker Failed on this port
 • Move to next entry in the list
Qav Bandwidth Analysis - 3

• Qav continues processing as follows (There is sufficient bandwidth for this stream):
 – If there are Active Listeners on this port:
 • Flag list entry as Approved
 • Reduce available bandwidth for remaining streams
 • Move to next entry in the list
 – If there are no Active Listeners on this port:
 • Flag list entry as Approved
 • Do not reduce available bandwidth (no stream data will flow)
 • Move to next entry in the list
Bandwidth Allocation

• Qav has finished processing this port’s list
• Compare Approved/Disapproved flag for every stream against current reservations, as specified on following pages
Bandwidth Allocation - 2

• Process list from top to bottom looking for Disapproved streams:
 – If stream is currently Approved:
 • Set port to filter Stream MAC DA
 • Remove bandwidth allocation from Qav
 • Deregister Talker Advertise from this port
 – Register a Talker Failed on this port
 – If there is a Listener attribute registered on this port declare a pending Listener Asking Failed on the port the Talker is registered on (this may require merging other Listener attributes)
 – Move to next entry in the list
Bandwidth Allocation - 3

• Reprocess list from top to bottom looking for Approved streams:
 – Deregister Talker Failed if it was declared for this port
 – Register a Talker Advertise for this port
 – If stream is currently not Approved allocate bandwidth via Qav
 – Set port to forward Stream MAC DA
 – Declare a pending Listener attribute on the port the Talker is registered on that is identical to this port’s Listener attribute (this may require merging other Listener attributes)
 – Move to next entry in the list
Bandwidth Allocation - 4

• If there are more ports on the bridge:
 – Build a new list for the next port by returning to the “Per-Port Bandwidth Analysis” slide #14

• If all ports have been processed:
 – Proceed to the next slide and process the “pending Listener attributes”
Listener Attribute Propagation
Listener Attribute Propagation

• Bandwidth Allocation for all ports in the bridge has been completed
• Process each port’s pending Listener attributes
 – If pending Listener attribute does not match current Listener attribute
 • Deregister current Listener attribute
 • Register pending Listener attribute
Qat/Qav
What runs where?
What runs in the Talker?

• **802.1Qav** for:
 – Bandwidth query and reservation
 – Queuing and shaping traffic

• **802.1Qat** for:
 – TalkerAdvertise request and ListenerReady indication processing
 – Bandwidth related Advertise/Failed changes
What runs in the Bridge?

• 802.1Qav for:
 – Bandwidth query and reservation
 – Queuing and shaping traffic

• 802.1Qat for:
 – Bandwidth related Advertise/Ready/Failed changes
 – Talker & Listener attribute propagation

• 802.1ak (MMRP) for:
 – Optional Talker pruning
What runs in the Listener?

• 802.1Qat for:
 – TalkerAdvertise indication and ListenerReady request processing

• 802.1ak (MMRP) for:
 – Optional Talker pruning
MSRPDU Talker Attributes
MMRPDU Message

- **AttributeType = 2**
- **Attribute Length = 6**
- **8 bits // MACVectorAttributeType = 2**
- **8 bits // Length of FirstValue field = 6**

VectorHeader
- **LeaveAllEvent 3 bits** // LeaveAll = 1
- **NumberOfValues 13 bits // Number of events encoded in the vector**
- **FirstValue // MACVector = 48 bits for MAC Address**

Vector
- **ThreePackedEvents**
 - **8-bits of** ((AttributeEvent8)+AttributeEvent1)*8+AttributeEvent
 - **ThreePacketEvents**
 - **...**
 - **ThreePackedEvents**

AttributeEvent
- **New = 0**
- **JoinIn = 1**
- **In = 2**
- **JoinMT = 3**
- **Mt = 4**
- **Lv = 5**

EndMark 16 bits // 0x0000
MSRPDU Talker Message

Maximum Attribute Length is 255
Questions?