MSRP Attribute Declaration, Propagation and Bandwidth Allocation

Craig Gunther (cgunther@harman.com)
24September2008 (updated 15October2008)
Topics

- MSRP Attribute Propagation
- Triggers for Bandwidth Reallocation
- Bandwidth Allocation Algorithm
- Listener Attribute Propagation
- Qat/Qav - What runs where?
- MSRPDU Talker Attributes
MSRP Attribute Propagation
MSRP Attribute Propagation

SR Station - Talker

Host Application

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

MAD_Join.request(TalkerAdvertise)

MSRPDU

PHYSICAL MEDIA (CAT-5e)

SR Station - Listener

Host Application

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

MAD_Join.indication(TalkerAdvertise)

MSRPDU

PHYSICAL MEDIA (CAT-5e)
Bridge MSRP Propagation

SR Bridge

Host Application

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

Qav Queuing & Forwarding

MAP (MRP Attribute Propagation)

MSRP Participant

MSRP (MRP Application)

MAD (MRP Attribute Declaration)

REGISTER_STREAM_ID(StreamID)

MAD_Join.indication(TalkerAdvertise)

REGISTER_STREAM_ID(StreamID)

MAD_Join.indication(TalkerAdvertise)

REGISTER_STREAM_ID(StreamID)

MAD_Join.request(TalkerAdvertise)

REGISTER_STREAM_ID(StreamID)

MAD_Join.request(TalkerAdvertise)

 REGISTER_STREAM_ID(StreamID)

MAD_Join.request(TalkerAdvertise)

MSRPDU

PHYSICAL MEDIA (CAT-5e)

PHYSICAL MEDIA (CAT-5e)
Talker’s Second Stream Fails

1. REGISTER_STREAM (StreamID)
 - Status update (Advertise)

2. REGISTER_STREAM (StreamID)
 - Status update (Advertise)

3. MSRPDU (TalkerAdvertise join)
 - MSRPDU (TalkerAdvertise)

4. MAD_Leave.request (TalkerFailed)
 - MAD_Join.request (TalkerFailed)
 - MSRPDU (TalkerAdvertise leave TalkerFailed join)

Status update (Advertise)
Status update (Failed)

MsrpP (including bandwidth verification) + Map

Application

Time

September 2008 IEEE 802.1 Interim - Seoul
Bridge Forwarding a Stream
Triggers for Bandwidth Reallocation
Bandwidth Reallocation

Actions that might cause a bandwidth allocation change

• TalkerAdvertise
• TalkerFailed
• ListenerReady
• ListenerReadyFailed
• ListenerAskingFailed
• Media bandwidth changed
WARNINGS:

In normal operation you would expect to see Talker declarations registered before Listener declarations, although this is not a requirement.

You might also see unexpected interaction in MSRP attribute processing for a short period of time after a Spanning Tree reconfiguration.
Bandwidth Allocation Algorithm
Definitions & Notes

• Bandwidth reservation is done on the TX side
• Definition: Active Listener = Listener Ready or Listener Ready Failed (bandwidth will be consumed if this stream is Approved)
• On Non-shared media: Talker Advertise from another port is associated with Active Listener on the current port
• On Shared media: the Talker Advertise may also come from the current port (e.g. 802.11)
Definitions & Notes - 2

- Merging Listener Declarations:

<table>
<thead>
<tr>
<th>FIRST DECLARATION TYPE</th>
<th>SECOND DECLARATION TYPE</th>
<th>RESULTANT DECLARATION TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ready</td>
<td>Ready</td>
<td>Ready</td>
</tr>
<tr>
<td></td>
<td>Ready Failed or Asking</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Asking Failed</td>
<td></td>
</tr>
<tr>
<td>Ready Failed</td>
<td>Any</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Ready or Ready Failed</td>
<td>Ready Failed</td>
</tr>
<tr>
<td></td>
<td>Asking Failed</td>
<td>Asking Failed</td>
</tr>
</tbody>
</table>
Per-Port Bandwidth Analysis

• Do the following for each TX port (completing the analysis for each port before proceeding to the next port):
 – Create a list of Talker declarations from any other port that could be sent out this port
 – This list is divided into two sections:
 • Streams with Active Listeners on this port are at the top of the list
 • Streams without Active Listeners on this port are at the bottom of the list
 – Sort each section by Talker Rank + StreamID
Per-Port Bandwidth Analysis - 2

• Include the following information with each Talker declaration in the list:
 – Stream ID
 – Talker Attribute (Advertise or Failed)
 – Talker Traffic Class (A or B)
 – TSpec
 – Talker is on same port “flag” (True or False)
 • Bandwidth requirements double if True
 – Stream MAC DA
 – Stream VID
 – Approved/Disapproved “flag” (set by Qav)
Qav Bandwidth Analysis

• Ask Qav to do a Trial Reservation based on information in the list
 – Qav will set Approved/Disapproved flag
 – Qav may adjust Talker attribute

• Qav processes the list as follows:
 – Work from top of list to bottom
 – Calculate bandwidth requirements based on:
 • TSpec + additional media overhead
 • Double bandwidth requirement if Talker is also on this port
Qav Bandwidth Analysis - 2

• Qav continues processing as follows:
 – If bandwidth is not available for this stream with this traffic class, or attribute declaration is Talker Failed:
 • Flag list entry as Disapproved
 • Set attribute in list to Talker Failed on this port
 • Move to next entry in the list
Qav Bandwidth Analysis - 3

• Qav continues processing as follows (There is sufficient bandwidth for this stream):
 – If there are Active Listeners on this port:
 • Flag list entry as Approved
 • Reduce available bandwidth for remaining streams
 • Move to next entry in the list
 – If there are no Active Listeners on this port:
 • Flag list entry as Approved
 • Do not reduce available bandwidth (no stream data will flow)
 • Move to next entry in the list
Bandwidth Allocation

• Qav has finished processing this port’s list
• Compare Approved/Disapproved flag for every stream against current reservations, as specified on following pages
Bandwidth Allocation - 2

• Process list from top to bottom looking for Disapproved streams:
 – If stream is currently Approved:
 • Set port to filter Stream MAC DA
 • Remove bandwidth allocation from Qav
 • Deregister Talker Advertise from this port
 – Register a Talker Failed on this port
 – If there is a Listener attribute registered on this port declare a pending Listener Asking Failed on the port the Talker is registered on (this may require merging other Listener attributes)
 – Move to next entry in the list
Bandwidth Allocation - 3

- Reprocess list from top to bottom looking for Approved streams:
 - Deregister Talker Failed if it was declared for this port
 - Register a Talker Advertise for this port
 - If stream is currently not Approved allocate bandwidth via Qav
 - Set port to forward Stream MAC DA
 - Declare a pending Listener attribute on the port the Talker is registered on that is identical to this port’s Listener attribute (this may require merging other Listener attributes)
 - Move to next entry in the list
Bandwidth Allocation - 4

• If there are more ports on the bridge:
 – Build a new list for the next port by returning to the “Per-Port Bandwidth Analysis” slide #14

• If all ports have been processed:
 – Proceed to the next slide and process the “pending Listener attributes”
Listener Attribute Propagation
Listener Attribute Propagation

- Bandwidth Allocation for all ports in the bridge has been completed
- Process each port’s pending Listener attributes
 - If pending Listener attribute does not match current Listener attribute
 - Deregister current Listener attribute
 - Register pending Listener attribute
Qat/Qav
What runs where?
What runs in the Talker?

- **802.1Qav** for:
 - Bandwidth query and reservation
 - Queuing and shaping traffic

- **802.1Qat** for:
 - TalkerAdvertise request and ListenerReady indication processing
 - Bandwidth related Advertise/Failed changes
What runs in the Bridge?

• **802.1Qav** for:
 – Bandwidth query and reservation
 – Queuing and shaping traffic

• **802.1Qat** for:
 – Bandwidth related Advertise/Ready/Failed changes
 – Talker & Listener attribute propagation

• **802.1ak (MMRP)** for:
 – Optional Talker pruning
What runs in the Listener?

• 802.1Qat for:
 – TalkerAdvertise indication and ListenerReady request processing

• 802.1ak (MMRP) for:
 – Optional Talker pruning
MSRPDU Talker Attributes
MRPDU

802.3 MAC header
- MAC DA = 01-80-C2-00-00-2X
- MAC SA = XX-XX-XX-XX-XX-XX
- EtherType = XX-XX

ProtocolVersion
- 8 bits // defined by the specific MRP application

AttributeType
- 8 bits // non-zero integer defined by the specific MRP application

Attribute Length
- 8 bits // Non-zero integer defined by the specific MRP application (length of FirstValue field)

VectorHeaderValue
- LeaveAllEvent
 - 3 bits
 - // NullLeaveAllEvent = 0
 - // LeaveAll = 1

NumberOfValues
- 13 bits // Number of events encoded in the vector
 - // Corresponds to the number of FirstValue entries and number of AttributeEvents

FirstValue
- ?? bits // defined by the specific MRP application

VectorAttribute
- ThreePackedValues
 - Vector
 - ThreePacketEvents
 - ...
 - ThreePackedEvents

AttributeList
- VectorAttribute

Message
- EndMark
 - 16 bits // 0x0000

EndMark
- 16 bits // 0x0000
MMRPDU Message

- **Attribute Type = 2**
- **Attribute Length = 6**
- **8 bits // MAC Vector Attribute Type = 2**
- **3 bits // LeaveAllEvent = 0**
- **13 bits // Number of events encoded in the vector**
- **16 bits // End Mark = 0x0000**
MSRPDU TalkerAdvertise Message

AttributeType = 1
Attribute Length = 27
AttributeListLength = 32

8 bits // TalkerAdvertise = 1
8 bits // Length of FirstValue

16 bits // Length of AttributeList data

VectorHeader

NumberOfValues 13 bits // Number of events encoded in the vector

Talker Advertise (27 octets) // AttributeType = 1
FirstValue

// StreamID (8) // Talker MAC SA Address 48 bits
// Unique ID 16 bits
// Data Frame Parameters (8) // Stream MAC DA 48 bits
// VLAN ID 16 bits
// Bandwidth (in 1000 byte/second granularity) 32 bits
// TSpec (8) // Frame Rate (in 1000 frame/second granularity) 16 bits
// Data Frame Priority (Class A=5, Class B=4) 3 bits
// Rank Stream importance 5 bits (only define emergency plus high & low priority for now)
// Accumulated Latency (4) 32 bits

VectorAttribute

AttributeEvent
// New = 0
// JoinIn = 1
// In = 2
// JoinMT = 3
// MT = 4
// Lv = 5

ThreePackedEvents

8 bits of ((AttributeEvent*6)+AttributeEvent)*6+AttributeEvent

EndMark 16 bits // 0x0000

ThreePackedEvents
...
ThreePackedEvents
MSRPDU (all) Listener Message

- **AttributeType**: 8 bits // Listener=3
- **AttributeLength**: 8 bits // Length of FirstValue
- **AttributeListLength**: 16 bits // Length of AttributeList data

Message

VectorAttribute

- **FirstValue**
 - **LeaveAllEvent**: 3 bits // NullLeaveAllEvent = 0 / LeaveAll = 1
 - **LeaveAllEvent**
 - **ListenerReady**
 - **ListenerReadyFailed**
 - **ListenerKillingFailed** (8 octets) // AttributeType = 3

VectorThreePacked

- **ThreePackedEvents**
- **VectorThreePacked**

DeclarationType

- **FirstDeclarationType**: 2-bits
- **SecondDeclarationType**: 2-bits
- **ThirdDeclarationType**: 2-bits
- **FourthDeclarationType**: 2-bits

VectorFourPacked

- **FourPackedEvents**
- **EndMark**: 16 bits // 0x0000
Questions?