IEEE 802.1Qat and IEEE 802.11 Quality of Service Inteworking

Date: 2008-11-03

Authors:

Name	Affiliations	Address	Phone	email
Osama Aboul-Magd	Nortel Networks	3500 Carling Avenue	613-763-5827	osama@nortel.com
Graham Smith	DSP Group	2941 Sunrise Blvd, #100, Rancho Cordova, CA 95762	916 851 9191 x209	Graham.Smith@DSPG.com
Ganesh Venkatesan	Intel Corporation	2111NE 25 th Ave, Hillsboro, OR 97124	503 334 6720	Ganesh.venlatesan@intel.com
Ed Reuss	Plantronics			ed.reuss@plantronics.com
David Bagby				dave@calypsoventures.com
Alex Ashley	NDS Ltd	One London Road, Staines, Middlesex, TW18 4EX, UK	+44 1784 848770	aashley@nds.com
Naveen Kakani	Nokia			Naveen.Kakani@nokia.com

Abstract

This presentation describes methods for the QoS interworking between IEEE 802.11aa and IEEE 802.1Qat. Interworking include signaling, parameters, and priority. The objective is to start the discussion.

.1Qat to .11 Interworking

- In IEEE 802.1Qat:
 - Talker declaration announces streams that are supported by the talker (source).
 - Listener declaration specifies the stream that a listener (destination) desires to join.
 - Resource allocation is performed during the propagation of the Listener declaration.
- In IEEE 802.11:
 - Station generates ADDTS Request frames including TSPEC IE requesting resource allocation
- Mapping is needed for:
 - Traffic parameters
 - Priority
 - Signaling messages

Traffic-Related Parameters

October 2008

Priority Mapping

- IEEE 802.1 SRP streams make use of priority 5 and priority 4 for transporting audio/video streams
- A possible mapping is
 - AC_VO (UP 6) <---> priority 5
 - AC_VI (UP 5) <---> priority 4
- Alternatively TGaa can follow the IEEE 802.1Qat lead and assign two priorities for supporting the two AVB classes.
 - Need to examine the related issues.

Priority	UP	IEEE 802.1D	AC	Designation
	1	BK	AC_BK	Background
	2	-	AC_BK	Background
	0	BE	AC_BE	Best Effort
	3	EE	AC_BE	Best Effort
	4	CL	AC_VI	Video
	5	VI	AC_VI	Video
	6	VO	AC_VO	Voice
	7	NC	AC_VO	Voice

Signaling Mapping

- Resource reservation will be needed at both the IEEE 802.1Qat and the IEEE 802.11 sides of the network.
- As signaling messages flow from one side of the network to the other, there is the need for signaling messages at one side to trigger the appropriate signaling message at the other side.
 - For example Talker or Listener Declaration message at the IEEE 802.1Qat side may trigger the ADDTS Request message (frame) at the IEEE 802.11 side.

References

• Virtual Bridged Local Area Networks – Amendment 9: Stream Reservation Protocol (SRP), P802.1Qat/D1.3, May 19, 2008.