CFF ID
Proposed ID for use in CnTag
August 2008 – Rev 1

Caitlin Bestler
Caitlin.bestler@neterion.com
“Reaction Point ID” is not the ideal term

- Hard to avoid implication that there is a Rate Limiter already in place.
- It really the Congestion Controllable Flow that we want to identify. The Rate Limiter comes later.
 - Note: Congestion Controllable Flow.
- We can say that it reflects an inactive Rate Limiter
 - But that only leads to confusion.
 - For many designs, all flows with the same Priority will be in a single queue until they are rate limited.
End Station Output Queues

- End Station Output Queues reflect many different design approaches:
 - L2-only service, Offload/L4-L5 service, VM/Zone/Application specific, TCP vs UDP, ...
 - And mixtures thereof
 - Multiple physical and/or virtual ports
 - Where memory lives: on-chip, on-host, external, etc.
 - What is in the queue:
 - TxDs versus Frames, mixtures (LSO).
 - Order of processing does not necessarily reflect theory.

- **DCB protocols must consider a large range of potential end station designs.**
First Issue: Congestion Notification Message Scope

- When an end station gets a CNM, which L2 flows should be rate limited?

- The CNM is already limited in scope
 - Generated based on sampling at CP.
 - Unicast delivery back to a single end station.

- But the CNM supplies information
 - It is not a “speeding ticket”
 - Ideally all flows from this end station that reach the congested CP should be throttled
 - But what is realistic?
 - What set of frames should be impacted?
Prior queuing should be Irrelevant

- **End stations have many designs**
 - Specific internal queue structures should neither be rewarded or penalized.

- **Frequently the pre-CNM queue will be too wide**
 - The end station will have had no reason to separate flows based on this destination.
 - Therefore many innocent flows will be slowed.

- **Sometimes the pre-CNM queue will be too narrow**
 - TOE/RDMA per-connection flows that are not the entire output from the end station to the destination.

- **Rate limited queues may be created after the CNM is received, the pre-CNM queue may fix relevant and irrelevant flows.**
Therefore CFFs are not Queues

- Rate Limited Flows MUST conform to the Rate Limiter.
 - And they SHOULD cause minimal or no head-of-line blocking of other Flows.

- A queue is certainly one method of achieving that
 - But implementations must balance between benefits of multiple queues and their costs.
 - Placing Flows with similar Rate Limiters in the same Queue must be a valid option for implementations.
 - Especially for Flows without an active Rate Limiter.
Proposed Definition of CFF ID

- **Each Flow is a member of a Flow Set**
 - There are only a small (TBD) number of Flow per Flow Set.
 - Multiple Flows per set are intended to support multi-pathing
 - They are not intended to reflect End Station internals.
 - Additional “source queue cookie” for internal use can be discussed separately.

- **Flow Set is determined by**
 - Egress Port
 - Destination: (VID + DA)
 - Priority

- **Additional L2-L4 Headers may be hashed to pick Flow within the Flow Set.**
 - There should be no effort expended to preserve order of frames that have different Flow IDs.

- **An End Station specific salt is then added to randomize the CFF ID.**
 - \(\text{CFF_ID} = f(\text{Flow Set}, \text{multi-pathing-hash}, \text{end-station-salt}) \)
Changing Flow IDs

- The prior definition could be extended to allow End Stations to include an administrative override and/or additional salt.
 - This could be used by an end station to load balance its actual flows based on actual traffic patterns.
- But, the Flow ID of any L4 flow MUST NOT be changed while the Flow ID is subject to a Rate Limiter.
Mouse/Elephant Problem

- Nothing obligates the End Station to apportion the Rate Limiter evenly across all L4 Flows assigned the same Flow ID.
 - The only requirement is that the Rate Limiter, as a whole, is complied with.
 - How the End Station allocates resources within the flows covered by a Rate Limiter is an implementation detail.