Feedback Request Strawman:
Using .1Qau for Load Monitoring in DC Networks

Mitch Gusat
IBM ZRL, Aug. 28, 2008
What is Fb_Rq? On demand status info

Problem: Monitoring, app-level (L4+) performance profiling, runtime load balancing, adaptive routing...

Solution: Build on the investment in .1Qau-compliant switches => Deliver the full/available feedback to sources! (before congestion arises)

Benefits
1. Speed: L2 feedback
2. Accuracy: Q info is already known to CP for QCN Fb. Ship it to RP!
3. Communicate Fb up the L3-7 stack. Use Flow-/RP-ID (?).
Fb_Rq Basics

- **Monitoring options**
 1. **Proactive**: RP-initiated => RP autonomosly issues Fb_Rq
 2. [Reactive: CP-initiated => RP begins to ping after QCN CNM]
 3. **Single CP** (reflect) vs. **path** (reflect reply & fwd request) Fb
 4. **Stateless** (anon.) vs. statefull CP (pings counted per FlowID)
Fb_Rq Strawman’s Steps

1. **RP**: injects Fb_Rq pkt w/ L2 flag and Seq./Flow/RP-ID
2. **CP**: receives Fb_Rq
 1. sets Psample=1 (or disregards if busy or in “silent” mode)
 2. dumps queue status info (see next)
 3. sends Fb_Rp (CNM-like) back to originating SRC
 4. optionally also forwards Fb_Rq if DST != local CP
 => path profiling (multi-pathing issues)
Extended Queue Status (EQS)

1. \textit{Prio, Qsize, Qeq, Qoff, Qdelta} + options

2. \textbf{PingCnt}: \# of pings (from any FlowID) RX-ed since the last change of \textit{q}' sign
 \rightarrow marks one monotonic episode (of \textit{Q} growth or drain)
 \rightarrow If aggregate per CP, it can provide HSD/no-sharers (if RP maintains its own PingCnt)

3. \textbf{TXCnt}: \# of pkts forwarded since the last change of \textit{q}' sign
 \rightarrow as proxy hint for avg. service rate

4. ...

5. [additional info, e.g. pointer to a complete CP “brain dump”]
Reactive Fb_Rq Operation (animated)

- Reactive probing is triggered by QCN frames
 - hence only rate-limited flows are probed
 - Insert one Fb_Rq ping every n KB of data sent per flow, e.g. n = 750 KB
 - Single CP probing: CPID of probes = destination MAC
- Pro-active probing needs no CNM, but n should be based on actual load and delay
Conclusion

Q: What is being enabled?
A: Anticipate overload “see it coming”
 • Potential for *early* custom response to congestion thru application specific logic:
 ➢ e.g. app-driven adaptive routing,
 ➢ task migration,
 ➢ collectives (MPI mcast, combining ops, locks),
 ➢ LB-ing engines,
 ➢ scheduling hints: "optimize for latency" or "optimize for throughput",
 ➢ control of new session admittance (postpone a bkup after the trading rush),
 ➢ redundant data placement,
 ➢ ...

IBM Research GmbH, Zurich
Why bother about Q’?

- Delay: queuing delay-dominated RTT destabilizes CM in large DC’s
 - additionally the RP delay further reduces RTT budget (see 21st Aug. call)
- Oscillations
 - with quick On/Off congestion episodes false recoveries are frequent (presented in 2007)
 - when RTT > 0.5-1ms Qoff is (much) less significant than Qdelta
- Q’ provides additional info

- Luckily Q’ (aka Qdelta) is available @ CP

- Q’ potential usage
 1. Q’ marks monotonical periods: queue backlogging / draining
 2. can provide HSD (N sharers) Fb
 3. extends the state space \{q,q’\} for tighter RL control @ RP
 1. enables RTT compensation
Pkt. Format

- TBD...
 - Enhanced CNM: add EQS to CNM’s Fb (QCN)