PBB-TE 1:1 Protection with Load Sharing

Ben Mack-Crane (<u>tmackcrane@huawei.com</u>) Linda Dunbar (<u>ldunbar@huawei.com</u>) Bob Sultan (<u>bsultan@huawei.com</u>) ZhuSheng Deng (<u>dengzhusheng@huawei.com</u>)

1:1 Protection w/ Load Sharing

- 1:1 Protection
 - Protection Group
 - Working and Protect entities
 - Faults (W-SF, P-SF)
 - Admin Requests (LO, FS, MS)
- Load Sharing Impact
 - Traffic is distributed (BSIs mapped to TESIs)
 - all TESIs in Protection Group may be Working for some BSIs
 - for each Working TESI the rest may be Protecting
 - Faults identified by TESI (not by role)
 - Admin Requests by TESI (not by role)
 - LO: remove traffic from TESI (FS == LO-W)
 - MS: remove traffic from TESI if no faults present
 - Model allows Protection Group with more than two TESIs

Load Sharing

Protection load is shared

Traffic Engineering

Traffic between edge bridges can be distributed to multiple routes

- control link loading
- make efficient use of available resources

Parallel Links

Traffic distribution can be engineered across parallel links

more deterministic than Link Aggregation hashing

Conventional 1:1 Protection is a Subcase

Bandwidth Analysis (LS vs. Non-LS)

Capacity B required between each pair of BEBs Each link can carry N TESIs of bandwidth B Each protection group has S TESIs (LS) or 2 TESIs (non-LS)

Assume Roughly Even BSI Distribution

Assume that BSIs can be distributed among TESIs connecting a pair of BEBs such that capacities required by the TESIs are approximately equal.

Bandwidth Calculation

- Variables
 - S: The number of TESIs between a pair of BEBs (LS)
 - B: The total working bandwidth reserved between two BEBs
 - N: The number of TESIs sharing a link
- Load Sharing
 - Link carries bandwidth load of (NB/S)*(1+(1/(S-1)))
- Non Load Sharing
 - Link carries bandwidth load of B*CEILING(2N/S)
- Ratio of Non Load Sharing to Load Sharing
 - B*CEILING(2N/S) / ((NB/S)*(1+(1/(S-1))))
 - CEILING(2N/S) / ((N/S)*(1+(1/(S-1))))
 - (S(CEILING(2N/S))) / (N(1+(1/(S-1))))

Bandwidth Gain

• Ratio of NLS to LS minus 1 (as a percent)

- (((S(CEILING(2N/S))) / (N(1+(1/(S-1)))) 1)*100
- 0% means no advantage for load sharing (e.g., LS with two TESIs)

