PBB-TE 1:1 Protection

Ben Mack-Crane
(tmackcrane@huawei.com)
G.8031 Questions (Q9/15)

• **Hold-Off in Do Not Revert state**
 – Agreed that hold-off should apply in DNR
 – Proposed to use hold-off before asserting any SF

• **MS from Do Not Revert state**
 – Agreed that MS from DNR is needed
 – Add state or request (some prefer adding state)
 – Will update G.8031 in next revision
Q9/15 on PBB-TE Protection

• Discussion noted that IEEE will express PBB-TE protection state machine according to 802.1 practice
• Contributions proposing to extend the APS in Rec. G.8031 to support PBB-TE (IEEE 802.1Qay).
• Added a new study point to extend G.8031 to support PBB-TE protection switching.
Complex predicates:
- attempt to capture request precedence in predicates
- state split between states and variables
- state variables used in predicates
- Revertive/Non-Revertive configuration captured in expression $WTRTime \neq 0$

Result is hard to analyze and compare with G.8031 behavior
Ways to Reduce Complexity

- Separate request precedence logic from state diagram
 - One input request to state machine (Rin)
- Eliminate state variables
- Separate diagrams for revertive and non-revertive cases
- Roughly match states to G.8031
Simplified State Diagram

protection state machine (revertive)
Simplified State Diagram

BEGIN || LO || SF-P

WORKING (A,C,F)
mapDataToWorking()

SIGNAL_FAIL (E)
mapDataToProtection()

FORCED_SWITCH (D)
mapDataToProtection()

MANUAL_SWITCH (G)
mapDataToProtection()

DO_NOT_REVERT (H)

MANUAL_REVERT (?)
mapDataToWorking()

FS

NR

SF-W

MS

protectio n state machine (non-revertive)
State Machine Incomplete

- Requirement that TESIs are bi-directional and symmetrically routed is not maintained by protection switching state machine
- Unnecessary reliance on external entity
- Specification can be completed by adding remote request/state input
- Completes specification and informs implementers of required coordination
- Management can provide remote input or APS protocol can be used – state machine remains the same
Protection w/ Remote Input

protection state machine (revertive)

BEGIN || LO || SF-P

WORKING (A,C,F)
mapDataToWorking()

NO_REQUEST (B)
mapDataToProtection()

SIGNAL_FAIL (E)
mapDataToProtection()

FORCED_SWITCH (D)
mapDataToProtection()

WAIT_TO_RESTORE (H)
WTRwhile = WTRtime

NR

R-FS || R-SF-W || R-MS

L-SF-W

L-FS

L-MS

MANUAL_SWITCH (G)
mapDataToProtection()

mapDataToProtection()
Protection w/ Remote Input

protection state machine (non-revertive)
1:1 Protection w/ Load Sharing

- Some comments have suggested that load sharing departs from the 1:1 model
- There are models of protection with load sharing which preserve the 1:1 model
- Following the 1:1 model
 - Keeps the work within the scope of the PAR
 - Maintains the simplicity of the protection scheme
 - Enables one state machine to cover all cases
1:1 Protection

- State machine scope: protection group
- Request scope: TE service instance
 - FS & LO: unconditionally move traffic off of TESI
 - MS: move traffic off TESI, only if not needed for protection
 - SF: switch traffic to protection (TESI failed)
- Switching action scope: TE service instance
 - mapDataToWorking() and mapDataToProtection()
- Group protects all traffic in case of a single TESI failure
- Management model: various
 - Specification should provide only basic model
 - Simple and flexible
- BSI provisioning includes TESI to which it is assigned
 - With or without protection group
1:1 Protection w/ Load Sharing

West B-Component

Working Entity Set

Protection Entity Set

East B-Component

PNPs

PNPs

Working and Protection Sets
1:1 Protection w/ Load Sharing

Mapping Traffic to the Protection Entity
1:1 Protection w/ Load Sharing

A Combined Protection Group
1:1 Protection w/ Load Sharing

- Provisioning of BSI’s protection TESI
- Bandwidth benefit of shared protection (N>2)
- Management benefits related to managing one protection group vs. managing many more TESIs and protection groups
- Same control model as original 1:1 protection
- Extensions work equally well for two or more TESIs in the protection group
Protection w/ Load Sharing

protection member state machine (revertive)
Protection w/ Load Sharing

protection member state machine (non-revertive)
Protection w/ Load Sharing

protection member state machine (revertive)
Protection w/ Load Sharing

protection member state machine (non-revertive)