Contributors

- Amit Shukla – Juniper
- Anoop Ghanwani - Brocade
- Anjan – Cisco
- Anthony Faustini - Cisco
- Asif Hazarika – Fujitsu
- Awais Nemat – Marvell
- Bruce Klemin – Qlogic
- Brice Kwan - Broadcom
- Claudio DeSanti- Cisco
- Craig W. Carlson - QLogic
- Dan Eisenhauer – IBM
- Danny J. Mitzel - Brocade
- David Peterson – Brocade
- Diego Crupnicoff – Mellanox
- Dinesh Dutt - Cisco
- Douglas Dreyer - IBM
- Ed McGlaughlin – Qlogic
- Eric Multanen - Intel
- Gaurav Chawla - Dell
- Glenn - Brocade
- Hemal Purohit - QLogic
- Hugh Barrass – Cisco
- Ilango Ganga - Intel
- Irv Robinson - Intel
- J. R. Rivers – Cisco
- Jeelani Syed - Juniper
- Jeffrey Lynch - IBM
- Jim Larsen - Intel
- Joe Pelissier - Cisco
- John Hufferd – Brocade
- John Terry – Brocade
- Krishna Doddapaneni - Cisco
- Manoj Wadekar – Qlogic
- Menu Menuchehry - Marvell
- Mike Ko – IBM
- Mike Krause - HP
- Parag Bhide - Emulex
- Pat Thaler - Broadcom
- Ravi Shenoy - Emulex
- Renato Recio - IBM
- Robert Snively - Brocade
- Roger Hathorn - IBM
- Sanjaya Anand – Qlogic
- Sanjay Sane – Cisco
- Shreyas Shah - PLX
- Silvano Gai - Cisco
- Stuart Berman - Emulex
- Suresh Vobbilisetty - Brocade
- Taufik Ma - Emulex
- Uri Elzur - Broadcom
Goals of Protocol

- Discovery of DCB capability in a peer
 - Mechanism to know if the peer device supports a particular feature such as Priority Groups (PG) or Priority-based Flow Control (PFC)
- DCB feature misconfiguration detection
 - Detect misconfiguration of a feature between the peers on a link
- Peer configuration of DCB features
 - Provide basic peer to peer configuration
DCBX Deployment Scenario

Switch Management

Server Management

Conflict alarm

PFC enabled region
DCBX Exchange Overview

- **Exchanged parameters:** Exchanged parameters are sent to the peer
 - Administered parameters
 - Operational parameters
- **Local parameters:** Local parameters are not exchanged in LLDP messages
Uses LLDP for exchange information between link peers
- Adds control protocol above LLDP to ensure synchronization between peers for information
 - Additional mechanism for reliability and synchronization
- Defines protocol to (optionally) provide desired configuration to link peer
DCBX Control and Protocol TLVs

DCBX Control TLV Definition

Type	Length
Oper_Version | Max_Version
SeqNo
AckNo
Each feature carries its version number, subtype and configurability information.
DCBX: PG and PFC TLVs

<table>
<thead>
<tr>
<th>PGID_UP0</th>
<th>PGID_UP1</th>
<th>PGID_UP2</th>
<th>PGID_UP3</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGID_UP4</td>
<td>PGID_UP5</td>
<td>PGID_UP6</td>
<td>PGID_UP7</td>
</tr>
<tr>
<td>PG_Percentage[0]</td>
<td>PG_Percentage[1]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Priority Group Parameters Structure

Priority-based Flow Control Parameters Structure

<table>
<thead>
<tr>
<th>P</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>E</th>
<th>P</th>
<th>Num_TCPFCs_Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Details of proposal

- Includes additional state machine and other details that are not covered in this presentation

- Comments/Questions/Suggestions are welcome
Thank You!