Clause 13
Changes Summary

Don Fedyk
Mick Seaman
Janos Farkas
Clause 13 Highlights

- Clause 13 was MSTP formerly
- Incorporation of 802.1D Clause 17 (RSTP)
- Addition of SPB and SPBB
- Harmonization of RSTP, MSTP, SPB (SPB & SPBB)
- STP supported for compatibility only
- Behavior and State machines
Key Concepts

- Active Topology
- Filtering and Forwarding
- RSTP has a CST (CST is single spanning tree)
- MSTP and SPB, SPBB have an IST
 - IST is the spanning tree for the active topology of the MSTP Region or the SPB region.
 - Have a CIST when considering Regions
MSTP Review

- IST
- CIST
- MSTI port roles
 - Root, Designated, Alternate, Backup
- CIST port roles
 - Root, Designated, Alternate, Backup
- Modeling a MSTP Region as a Bridge
 - CIST modeled as a single bridge
MSTP Spanning Tree

Master Port

Base VID

Tree is a function of:
- Bridge Priority
- Port Priority

Not Shown CST port Roles and MSTI port Roles
SPB New

- Follows MSTP model
- ISIS-SPB used for SPB, SPBB topology
- BDPUs used for CIST
 - Shadowing Behavior
 - For TAP messages on the IST
 - For BDPUs outside the SPT Region
MSTI
Shortest Path Tree

Base VID

SPT region

SPVID

Only one SPT shown
CIST for SPT: Same concepts

Tree is a function of:
Bridge Priority
Port Priority

Logical Bridge Equivalence
Interconnecting RSTP to SPT Regions

- SPT Region model as a Bridge based on the CIST port roles
- Common Topologies combinations
 - All permutations work however
 - When SPB is deployed it will typically be SPB and RSTP legacy
 - When SPBB is deployed it will typically be solely SPBB
 - Other VLANs may use RSTP
- BPDUs Promiscuous
Other ways to redundantly connect to a region (802.1aq out of scope)

- Use L2GP
- Other protocol options
 - See Future work items

SPB Interworking

- SPB regions establishment
- Interworking
SPT Regions

• Two bridges exchange BPDUs indicating SPB capability
 – Force Protocol Version 4

• The region is established when two bridges can both support SPB and ISIS-SPB exchanges Hellos

• They must determine their respective SPVIDs (SPTID Allocation)
Results
SPT BDPUs

- For the CIST (IST)
- All ports send Full BDPUs learned from ISIS-SPB with:
 - Configuration Messages
 - MST Configuration Identifiers
 - TAP Messages
Tree Agreement Protocol

- Introduced for RSTP, MSTP, SPB, SPBB
- Exchanged in BDPUs
- RSTP
 - Per port agreement (per tree)
- MSTP
 - Per port agreement for IST
 - Per port agreement per MSTI
- SPB, SPBB
 - Per port agreement for IST
 - Per port agreement per IS-IS instance for all SPTs (IS-IS database digest)
TAP & SPB Interworking

- SPB interworks with RSTP (and STP, MSTP) via the regions using the CIST.
- TAP is use both in the SPB region and external to the SPB region
 - Within the SPT region TAP BDPUs on all ports but is an IS-IS database digest
 - TAP is supported from the CIST to RSTP
 - TAP is not used on receipt between two regions
Partial and disputed connectivity

• Handling of asymmetric failures
 – To ensure that the active topology remains loop-free, a Designated Port will recognise that a dispute is in progress and stop learning from or forwarding frames, if it receives a BPDU with a worse message priority and the learning or forwarding flag set from another port that claims to be Designated.
 – If two (Designated) ports attached to the same LAN cannot communicate with each other at all, but can each communicate with a third (Root) port, there is also the potential for a loop if one of the Designated Ports has a priority vector that is worse than that of the Root Port. Receipt of better priority vector from a Root Port is therefore treated as a dispute.
In-service upgrades

- IS-IS Supports Graceful restart
- RSTP and MSTP can support similar capabilities
 - There are implementations that are capable of storing operational snapshots of BPDUs
 - Uses conditions that you can continue forwarding without sending BPDUs
State Machines

• 50% of Clause 13 is state machines
• Mick has a tool that verifies these.
• How can we ensure the tool is accurate?