LLDP TLVs required for P802.1au

Simplifying the Congestion Notification Domain interchange via LLDP

Rev. 1

Norman Finn
nfinn@cisco.com
References

- This presentation is available at:
Defending CN Domains

- **Receive defenses**

 A bridge prevents non-CN frames from entering a CN-enabled network on a CN priority by remapping all frames coming from a non-CN-enabled system to a non-CN priority, so that uncontrolled data streams do not cause uncontrollable congestion.

 A station can prevent non-CN frames from entering a CN-enabled input queue because its functions that process these frames cannot handle non-CN-tagged frames.

- **Transmit defenses**

 A station or bridge does not transmit CN-tagged frames from a queue on a CN priority if the receiving system is not CN-enabled, so that congestion-controlled streams can be sent to a system that is not CN-aware, and so that CN-tagged frames are not remapped to another priority by the receiver’s defenses.
CN Domain protection events

1. NoMap
 - The bridge or station turns off its remapping of priorities for ingress frames.

2. SndTags
 - The bridge or station turns off its stripping of CN-tags on output.
 - The station enables transmission of CN-tagged frames.
LLDP TLV bits, one bit per priority

1. **CN[n]**
 - This priority is a CN-priority.

2. **Rdy[n]**
 - I have turned off my priority remapping defenses.
Per-priority handshake:
Both have receive defenses

- Each turns off its defenses (and turns on Rdy) after seeing “CN” in LLDP.
- Each enables tag sending after seeing the other’s Rdy bit.
Per-proirity handshake:
#1 has no receive defenses

- #1 is always Rdy; it has no defenses to turn on.
- Neither can send tags until it sees the other’s Rdy.
- Device #2’s “CN” bit alone is of no interest to Device 1.