

LLDP TLVs required for P802.1au

Simplifying the Congestion Notifiation Domain interchange via LLDP

Rev. 1

Norman Finn

nfinn@cisco.com

References

This presentation is available at:

http://www.ieee802.org/1/files/public/docs2009/au-nfinn-LLDP-TLVs-0109-v01.pdf

Defending CN Domains

Receive defenses

A bridge prevents non-CN frames from entering a CN-enabled network on a CN priority by remapping all frames coming from a non-CN-enabled system to a non-CN priority, so that uncontrolled data streams do not cause uncontrollable congestion.

A station can prevent non-CN frames from entering a CN-enabled input queue because its functions that process these frames cannot handle non-CN-tagged frames.

Transmit defenses

A station or bridge does not transmit CN-tagged frames from a queue on a CN priority if the receiving system is not CN-enabled, so that congestion-controlled streams can be sent to a system that is not CN-aware, and so that CN-tagged frames are not remapped to another priority by the receiver's defenses.

CN Domain protection events

1. NoMap

 The bridge or station turns off its remapping of priorities for ingress frames.

2. SndTags

- The bridge or station turns of its stripping of CN-tags on output.
- The station enables transmission of CN-tagged frames.

LLDP TLV bits, one bit per priority

1. CN[n]

This priority is a CN-priority.

2. Rdy[n]

I have turned off my priority remapping defenses.

Per-priority handshake: Both have receive defenses

- Each turns off its defenses (and turns on Rdy) after seeing "CN" in LLDP.
- Each enables tag sending after seeing the other's Rdy bit.

Per-proirity handshake: #1 has no receive defenses

- #1 is always Rdy; it has no defenses to turn on.
- Neither can send tags until it sees the other's Rdy.
- Device #2's "CN" bit alone is of no interest to Device 1.