Audio Video Bridging (AVB) Assumptions
IEEE 802.1 AVB Plenary
Nov 2008 – Dallas, TX

Green Text = Agreed to at a Plenary (was Blue)
Blue Text = Newly Agreed to (was Red at last Face 2 Face)
Black Text = Not Decided
Changes Marked with Red from last version

Don Pannell & Michael Johas Teener
Marvell & Broadcom
dpannell@marvell.com & mikejt@broadcom.com
Revision History

- avb-pannell-mjt-assumptions-1108-v18: Nov 2008, Dallas, TX
- Avb-pannell-assumptions-0708-v16: July 2008 – Denver, CO
- Avb-pannell-assumptions-0508-v14: May 2008 – calls
- Avb-pannell-assumptions-0408-v13: calls
- Avb-pannell-assumptions-0308-v12: 03/20/08 Orlando, FL
- Avb-pannell-assumptions-0308-v11: 03/05/08 Call
- Avb-pannell-assumptions-1107-v10: 01/28/08 Los Gatos
- Avb-pannell-assumptions-1107-v9: After many calls – 11/13/07 Atlanta
- Avb-pannell-assumptions-0907-v8: After many calls – 9/04/07 Stockholm
- Avb-pannell-assumptions-0707-v7: After many calls – 7/17/07 San Francisco
- Avb-pannell-assumptions-0507-v5: After many calls
- Avb-pannell-assumptions-0407-v4: After 4/11/07 call
- Avb-pannell-assumptions-0407-v3: After 4/04/07 call
- Avb-pannell-assumptions-0307-v2: After 3/28/07 call
- Avb-pannell-assumptions-0307-v1: Before 3/28/07 call
Preface

• This is the *final* assumptions package in the old format. Most of this is going to be moved into the Annex Z’s of 802.1Qat, 802.1Qav, 802.1AS or 802.1BA.

• The following slides are the same as those discussed in Denver on July 2008, but annotated with “Qat”, “Qav”, “AS”, or “BA” to indicate where this item will be moved.

• Sometimes a “done” annotation is used to indicate that the item is already documented.
Performance Goals (BA)

- Max Latency (802.1Qav – MAC to MAC, not analog source to sink eg., microphone to speaker or hard drive to display)
 - 802.3: AVB Class A: Less than 2 mSec over 7 Hops (this is based on a total trip budget of 10 - 15 mSec for lip to ear synchronization – Ref 4, Section 5.1)
 - This is affected by port speed, # ports on the bridges, and the max frame size? – Ref 5 & 6
 - 802.3: AVB Class B: Less than 20 mSec over 7 Hops?
 - 802.11: ??
- End node latency needs to be known and communicated, but it’s out of scope
- Hops are defined in 802.1 terms, i.e., 1 LAN = 1 Hop
Performance Goals / Names *(BA?)*

- **Latency Variation over 7 Hops**
 - 802.3: Bounded only by the maximum latency for each Class?
- **Maximum Interference Amount per Hop (Qav)**
 - Class A: 1 Max size frame + Sum of the Maximum size of the Class A frames on each of its other ports? – Ref 5
 - Class B: 1 Max size frame + 1 Max size Class A burst (based on max Class a BW allocation) + Amount of other Class B frames on each of its other ports?
- **Need to define a Traffic Class Measurement Period for bandwidth calculations (Qat)**
 - This results in Talkers using smaller frames on its per flow shapers – Use 125 uSec for Class A 250 uSec for Class B?
- **AVB Class A together with AVB Class B cannot use more than 75% of a link’s bandwidth (i.e., not to exceed 75%) (Qav)**
 - The Remaining 25% (or more) is used for Legacy (non-AVB) streams
- **Functional Device Type Names**
 - AVB will use Talkers, Listeners & Bridges
 - Talker is the source of a stream, Listener is a receiver of a stream
 - A Bridge is an 802.1 Bridge
 - Any physical device could be any combination of these
802.3 Link Requirements (BA)

• Link Speed
 – 802.3: 100 Mbit/sec or faster (i.e., no 10 Mbit support)
 – Energy Efficient Ethernet issues need to be considered when we know its impact
 • We THINK that something like 10 uSec delays are OK?

• Link Duplex
 – 802.3: Full Duplex only (i.e., no half duplex support)

• AVB behavior over Link Aggregation (802.3 clause 43, now 802.1AX) links will not be specified (AS/Qat/Qav need to address)
 – Problems with AS and Qat and Qav
 – i.e., Link Aggregation support is dependent on contributions from those that need it and may need to become part of a separate PAR

• Maximum Frame Size
 – Defined as Layer 2 bytes – or start of DA through end of CRC
 – 802.3: 1088 bytes for AVB Class A for 100 Mbit links (assumes 125 uSec Bandwidth Measurement Interval)
 For Everything else: 2000 bytes (i.e., Max Legal frame size) – actually this is the original 1500 bytes at the MSDU (Layer 3 & above bytes)!!! (i.e., no Jumbo frame support)

• Flow Control (AS/Qat/Qav need to address)
 – 802.3x is not supported and cannot be used on AVB links
 – 802.1Qbb (Per Priority Pause) is not addressed by AVB but is not allowed for any AVB traffic
AVB Frame Format

- **802.1 Q Tagging**
 - All AVB Streams will be Q Tagged *(BA)*
 - Talkers that are not VLAN aware must use a VID of 0x000 in these frames
 - Bridges transmitting to Listeners must not strip the Q Tag on AVB classes or other traffic of the same VLAN
 - All PTP frames (for 802.1AS) will NOT be Q Tagged *(AS)*
 - All SRP frames (for 802.1Qat) will be Q Tagged *(Qat)*
 - All Q Tagged frames must be single Tagged at a Talker and a Listener
- **VLANs**
 - The VID is a VLAN and not a Stream Identifier
 - Stream Identifiers must be unique per VID
- **Ether types**
 - The Ether type of a frame is not a Stream Identifier
- **Priorities *(BA)***
 - AVB Class A Streams will use a default Q Tag priority of 5 (PCP)
 - AVB Class B Streams will use a default Q Tag priority of 4 (PCP)
Stream Identification - SRP

• Stream Identification (for Queue Usage in Bridges & Listeners – Ref 1) *(BA)*
 – A Stream Reserved (SR) Frame is any Tagged Frame with a designated SR priority entering an SR port *(Qav, check terminology)*
 – An SR Port is a port mode used to differentiate the port from being an Edge port (SR ports are part of the SR domain, Edge ports are at the edge of the SR domain, not connected to an SR aware device) *(Qav, check terminology)*

• Stream Policy (for Queue Usage in Bridges – Ref 1) *(Qav)*
 – Only those frames that meet the Stream Identification (above) can be placed into the Stream Reserved (SR) Egress Queues
 – All other frames are placed into the non-SR Egress Queues
 – Frames that contain a designated SR priority entering a non-SR port must have their priority re-mapped
SRP Assumptions *(Qat)*

- **Stream Identification (for Filtering in Bridges)**
 - Different Multicast Streams must use Unique Multicast Addresses (within the same VLAN)
 - The standard will support Unicast (Individual) & Multicast (Group) DA for SR streams
 - Different Unicast streams may use the same Unicast address
 - Filtering is done on frame’s DA + VID
- Each stream can use only one priority value
- A Reservation Identifier for SRP (i.e., Talker MAC Address along with a 16-bit higher level identifier) is for one stream only
- SRP will allocate a Static bandwidth for a stream (i.e., Dynamic, sometimes called Variable Bit Rate, support is dependent on contributions from those that need it and may need to become part of a separate PAR)
 - Therefore, Variable Bit Rate streams need to reserve the peak bandwidth that they need
- Reconfiguration of a stream’s bandwidth is allowed
SRP Assumptions

• SR Frame Priorities are changeable *(Qat/Qav/ in BA they won’t be)*
 – These are changeable for ‘engineered’ networks
 – For Home networks the set of specified defaults simply must work!

• The association of an SR Class to its frame Priority can be changed by management *(Qat/Qav/ in BA it won’t be)*

• Hook to existing higher layer protocols without imposing any new requirements on the higher layer protocols *(Qat)*

• Detailed diagnostics about the SR domain and its capabilities are not a part of SRP *(Qat)*
 – The intent is to use the work being done in 802.1ag

• A Listener is ready to accept a stream at the time it makes a reservation request *(done)*
SRP Assumptions

• SRP will Respond to changes in the network topology (e.g., Spanning Tree change) by re-converging after the topology change \((\text{done})\)
• SRP will respond to changes in usable bandwidth (e.g., wireless and/or coordinated shared networks) by recalculating (i.e., by dropping lower ranking streams) \((\text{Qat})\)
• Need to report error reason(s) to affected Nodes when a ‘No’ is given to an SRP stream request, e.g.,: \((\text{Qat})\)
 – Can’t store current DA (i.e., bridge is out of DA resources)
 – Use alternate DA (i.e., DA is already in use or Hash problem)
 – Don’t have enough bandwidth on a link (report what bandwidth is left and which link?)
 – Out of MMRP database resources
 – Requested Priority is not an AVB Class in this device
 • Do we report these at once (vector), or prioritize the error?
 • Only report the first error on a path from Talker to Listener?
 – Max frame size is too large? But is this in the T-Spec?
SRP Assumptions

• MAC DA’s are Allocated by the Talker: *(BA)*
 – And the Talker gets it: From a higher layer
 – 1722 is developing a MAC Address Acquisition Protocol (Annex C in 1722)

• SRP v1 will not support dynamic bandwidth changes *(done)*
 – A later version may
 • This is done by requesting the same Stream ID with a new T-Spec?
 • To do this the T-Spec parameters (bandwidth & packets per second) can not change in opposite directions?

• SRP v1 will not support multiple talkers using the same Stream ID *(done)*
 – A later version may support multiple Talkers using the same Stream ID

• The maximum time to make or break an SRP reservation in the absence of a topology change is: *(Qat/BA)*
 – This goal is defined per hop assuming a max of 7 hops
 • For consumer remote control applications this must not exceed 100 mSec?
 • For professional video applications this must not exceed 20 mSec?
 – This may need to be moved to 802.1BA
SRP Assumptions (Qat/BA)

- It should be possible for SRP to indicate the presence/absence of protocol activity from adjacent Bridges (receipt of Talker registrations, etc.) and that can be used directly as a means of determining where the SRP boundary lies
 - This may make the boundary somewhat mobile, as it may move depending on whether or not a Bridge is issuing registration; however, if it isn’t, then it also isn’t a source of streams, so may as well be outside the region as in it
 - Hence there is no need to use 802.1AB (LLDP) as a means of detecting the boundary
 - Need to detect ports connected to Buffered Repeaters or ports to more than one device
 - To set these ports as SRP edge ports (i.e., non-AVB ports)
 - Use 802.1AS’s delay?
 - Will this be an input to SRP? Can this be overridden?
SRP Assumptions (Qat)

- Talker reservations are propagated everywhere (by default) but they can limited to only the ports where the destination address has been registered by MMRP. This is called Talker Pruning - which removes unnecessary Talker registrations in the rest of the network at the expense of slower re-convergence.
- When there is a change in the network topology
 - Will not transmit SR streams at best effort, nor oversubscribe the SR queues beyond the limit
 - This means the flows will be interrupted
- MMRP or IGMP could be used on a ‘Listener Proxy’ port on an AVB Bridge. Specifying this proxy is highly desirable for 802.1BA
 - MMRP can be used for Talker pruning in very large networks and will be specified by SRP, however it’s important to note that talkers do not need to wait for MMRP registrations … other registration mechanisms may be available
- Talkers and Listeners must be MSRP aware
 - Bridges can proxy as a Listener
- SRP devices talk to SRP devices and the SRP protocol can self discover
SRP Assumptions *(Qat)*

- The figure below is a valid SR Cloud
- SRP Needs to report the total worst case latency on a path
 - So higher layer software can determine if it wants to listen to the stream as it may not meet the stream latency requirements
SRP Questions \textit{(Qat)}

- Don’t need to specify a sublayer interface in Qav to respond to T-Spec requests (e.g., is 802.1AE enabled, …)
 - The system will know if MACSec is enabled on the port or not…
- Need to make sure that there are margins built into the bandwidth requested vs. the Qav parameters to make sure that the +/- 100 ppm clock difference between adjacent devices does not cause overflow
 - Margins need to be built in at the Talker only
 - The Talker needs to reserve a little bit more than what it needs (e.g., 0.02%?) and it can’t use it
 - SRP does this?
- 802.1AS is not required
SRP Questions

• T-Spec Parameters? *(Qat/Qav/BA)*
 – The traffic class, which implies a TSPEC measurement period depending on its Class (either Class A or Class B)
 • Traffic Class Measurement Period done per stream at the Talker before the Talker’s Class shaper is: Class A: 125 uSec Class B: 250 uSec?
 – The bandwidth, which in bits/sec transmitted in mac_service_data_units during a traffic class measurement period?
 – The maximum number of packets transmitted per second during a traffic class measurement period?

• Note: Minimum of 42 PDU data bytes in min. size 802.3 frames? What this means is you will get 42 bytes reserved even if you want less an 802.3 link. *(Qat)*

• The maximum packet size will be determined by bandwidth, traffic class and layer 2 technology (among other things) *(Qat/Qav)*
 – How is layer 2 part of this?

• Fan-in is the main component of latency *(BA)*
Domain Questions/Assumptions

• What is an SRP domain & its forwarding rules? *(Qav)*
 – An SRP class domain consists of connected ports that are configured to use the same priority for the stream class
 – Each Class can have a different domain
 – In the default/non-engineered case 802.1AS is needed to detect ‘buffered repeaters’ however so this is a requirement of 802.1BA

• What is an AVB (or 802.1BA) domain? *(BA)*
 – Assume it to be a subset of an 802.1AS domain
 – It is the intersection of the 802.1AS domain and an SRP Class domain

• What is an 802.1AS domain? *(done)*
 – A set of contiguous bridges, end stations and links that meet the requirement of 802.1AS

• AVB (802.1BA) streams must reside entirely inside an AVB Cloud? Yes *(BA)*
 – But SRP allows streams to be mapped to the edge of an SRP domain to proxy for a non-AVB Listener (like a PC)
 • In this case the AVB bridge snoops IGMP join requests from the Listener
 – SRP Guarantees are made only within the Talker’s AVB Cloud
PTP Assumptions (AS)

- **PTP Clock Quality (802.1AS clock, Ref 2)**
 - Application Jitter & Wander in Ref 3 are met by passing the .1AS clock through the reference (measurement) filter (filter to be defined in .1AS)
 - PTP time is based upon TAI which does NOT experience step changes at daylight savings time changes nor does it change when there is a leap second, nor does it change across time zones
 - +/- 100ppm or better from a free running > 25 MHz clock
 - Less than 4 ppm per Second drift (crystal drift) Reference needed! Spectrum (or Alan variance to TDEV) spec needed
 - End point time synchronization accuracy for steady-state (up to 7 Hops) <= 1 uSec (i.e., any 2 PTP clocks separated by at most 7 Hops differ by no more than 1 uSec i.e., +/- 500ns from the grandmaster)
 - Endpoint media output synchronization accuracy within 1 uSec after the 802.1AS to AES3 filter?
 - Network settling time at startup: < 2 Sec
 - Would like to see < 200 mSec? – need a contribution
 - Applications above 802.1AS will be provided with the PPM offset of the new grandmaster relative to the previous grandmaster - the grandmaster that won knows the previous grandmaster
PTP Assumptions (AS)

• PTP Clock Quality (802.1AS clock, Ref 2) Continued:
 – If a new grandmaster that is not traceable to TAI takes over, it takes over using the time of the previous grandmaster, if any (i.e., any new grandmaster must 1st sync to the current grandmaster before taking over), but provides no bound on the PPM change (other than specified above)
 – If the new grandmaster is traceable to TAI (or if any grandmaster clock is changed by, for example, the user), PTP time may experience an arbitrarily large step change in time
 • The new grandmaster will communicate the step change in time
 – 802.1AS provides ‘GM Disruption Count’ information such that when a stream is mapped and de-mapped, it can be done such that both ends know they’re using the same grandmaster time. This information is important when a grandmaster experiences a step change in time.
 – Assuming no spanning tree reconfiguration, on grandmaster changeover, the time between the last Sync of the old grandmaster and the time of the 1st Sync of the new grandmaster (holdover time) plus the time from the 1st Sync of the new grandmaster until the clocks in the domain have settled, shall be less than 2 Sec. Goal < 200ms? – need a contribution
 • Note: Spanning tree may cause additional settling time of several seconds
PTP Assumptions (AS)

- PTP Clock Quality (802.1AS clock, Ref 2) Continued:
 - When a bridge stops receiving Sync messages, it quickly stops sending Sync messages while the new grandmaster is selected, allowing stations to enter holdover quickly
 - A minimum Sync rate of TBD Syncs (e.g. 10 for 802.3, 3 for 802.11) per second is sufficiently frequent to meet PTP clock quality requirements (to be verified – we know 100/sec works)
 - Various links within a single 802.1AS domain may have differing SYNC intervals (e.g. 802.11 vs. 802.3) but we will specify the minimum interval per medium so that processing load will be understood
 - Fix the values in 802.1BA for different profiles
 - A bridge will send Syncs at accelerated TBD rate for TBD sync messages when a link comes up or when a node becomes the new grandmaster?
 - Guidance needed in the future – should be an 802.1BA profile attribute?
 - A bridge doesn’t implement Best Master Clock, but a device may include both a bridge and station functionality
 - 802.3 PHY latency variation is as specified in (Ref 2)
 - No more than 86 ns per Hop or 43 ns per PHY (i.e., portion that is not known and corrected for)
PTP-BMCA Assumptions (AS)

• BMCA = Best Master Clock Algorithm
• No pre-master state (as 1588 has)
• No 2-msg qualification of announce msgs from potential masters
• Every Bridge will support BMCA and will create an AS spanning tree
• BMCA will be described using RSTP formalisms, with a possible annex using 1588 formalisms
• Path cost using simple sum (not sum of squares)
• Does it help significantly to run synchs and announces at a higher rate temporarily when a new GM goes active? Propose Yes but:
 • [indent] Depends on the actual number for the steady state rate
 • Need default BMC priorities to keep 802.11 STA from becoming GM in the presence of wired STA
• Loss of GM is detected by a lack of synch msgs or a lack of announce messages
• Announce msgs are sent immediately on loss of GM with no randomization
PTP Assumptions (AS)

- Spanning Tree
 - An AS spanning tree will eliminate routing loops in an AVB cloud for PTP
 - Sync messages are passed along the spanning tree
 - Only 802.3 PathDelay messages are transmitted/received even on ports blocked by AS’s (or other) spanning tree
 - AS must drop messages it receives that came from itself
 - If multiple responses are received on a port from a single request, the link is considered to be outside the AS Domain
 - If the measured link delay exceeds a per link TBD value then the link is considered to be outside the AS Domain (buffered repeater issue - is this an 802.1BA issue?)
 - Until a response is received the link is considered to be outside the AS Domain
 - Hence there is no need to use AB (LLDP) as a means of detecting the boundary
 - PathDelay information is then provided to RSTP to establish the link cost (which may cause a change in spanning tree to avoid buffered repeaters)
 - Exact thresholds and preferences are set by an 802.1BA profile
PTP Assumptions (AS)

- **802.1AS does not modify** frames on-the-fly (i.e. **all clocks are two-step clocks**)
- An 802.1AS domain is a contiguous set of bridges/end-stations that meet the 802.1AS requirements that are directly connected or associated via links that are operating as 802.1AS links
- The 802.1AS protocol packets are not propagated beyond the 802.1AS domain, except for determining the edge of the 802.1AS domain
- The timing reference plane is defined as the interface between the PHY and the physical medium
- The point in the message corresponding to the beginning of the first symbol following the start of frame delimiter (SFD) is a distinguished point termed the Message Time Stamp point
PTP Assumptions (AS)

- Those clock components associated with both an end-station and bridge-station are the same.
- All potential grandmasters must have a Clock Target function – even those grandmaster’s with a clock traceable to TAI.
 - A Clock Source-only device is disallowed, because it introduces possible time discontinuities when the grandmaster changes, and because a clock target is needed to measure the time and frequency offsets.
- Bridges will introduce less than 5msec Residence Time? (also BA)
 - Probably an 802.1BA profile-specified value.
PTP/Qav Priority (Qav)

- All stream frames that are ready are transmitted ahead of all other frames (even MGMT/PTP ... e.g., BPDUs)
Qav Assumptions *(Qav)*

- Bridges do per class shaping *(done)*
- Talkers need to do both per stream and per class shaping (i.e., what’s in the Talker’s MAC)
 - Streams shall be shaped prior to reaching the Talker’s MAC
 - In the absence of congestion (i.e., interfering traffic), Talkers will not burst AVB stream frames (i.e., they will transmit 1 frame then an extended IFG to even out the frame spacing)
- Policing at ingress is not required and will not be specified *(done)*
- Talkers are required to follow the shaping algorithm that is specified for Bridges (i.e., that which is defined in the 802.1Qav drafts)
- Burst Credits do not accumulate in the absence of congestion *(done)*
- The queue draining algorithm does not use 802.1AS’s (or 1588) time or rate; therefore the Scope of the project is being revised *(done)*
Qav Questions *(Qav)*

- How will Qav work with Qaz (i.e., pacing for congestion notification)?
 - We will work with Qaz to make sure we don’t conflict in terms of “bandwidth available” (managed Class A/B limits)

- How will Qav’s domain be determined?
 - There is no Qav domain!
BA Assumptions (BA)

- Talkers are required to do this…
 - All Talker capable devices shall be Grandmaster capable
- Bridges are required to do this…
 - May be Grandmaster capable
- Listeners are required to do this…
 - May be Grandmaster capable
- Profiles
 - Consumer plug-and-play – Kevin
 - Professional A/V – Gael
 - Industrial – Franz-Josef
- The edge of an AVB cloud is detected with 802.1AS mechanisms
 - For Ethernet, the path delay portion of PTP can be run without a Grandmaster thus buffered repeaters can be found
- The AVB cloud must have exactly one AS domain
 - Don’t want an AVB cloud using different time services
BA Assumptions \((BA)\)

- Class A will use PTP Priority 5
- Class B will use PTP Priority 4
- No other classes will be supported
 - These are specified so that different priorities are not used for the same Class on different bridge ports
- Drop Precedence will not be used on 802.3 links
- 802.3 copper cable’s delay is 500ns for 100 meters
 - Needed for ‘buffered repeater’ time limit amount
CE-BA Assumptions (BA)

- Bridges should snoop IGMP on ports that go to a Listener and then generate MMRP requests and also proxy for the Listener?
Professional-BA Assumptions (BA)

- MMRP is required to support Talker pruning?
- Time to request and get a reservation setup
 - 20 mSec through 7 hops of Ethernet for a Professional profile (assumes time per hop is the same per hop)?
- Do we need to specify a mechanism to allow a Listener to move from one Talker to another Talker without using a pre-reservation (since a pre-reservation cannot be done)? Do we need to synchronize the change in the Network?
 - Can we keep a leave & join request paired?
BA Questions (BA)

• How will MSTP select an SRP path over a CM (Congestion Management) path or a non-SRP/non-CM path using ‘out of the box’ defaults?
 – For AVB with non-AVB devices: Use MSTP with at minimum one spanning tree instance and set AVB to AVB path costs low (match terms in capability vectors) and playing with root costs using MSTP’s priority vector?
 – May need a new PAR to define how these vectors are defined?
• A TPMR needs to support 802.1AS between its ports if it wishes to be an AVB link (or it will look like a ‘buffered repeater’) (AS)
• Do we generalize the stream MC address acquisition (1722 is looking at using this by requesting a block of addresses), or use a new layer 2 DHCP type of server, or allocate Bridges a unique ID to use in a MC OUI?
 – Start out with a request & claim, and then you get a response which could be a defend or it’s an answer from a server that will indicate what address(es) to use. A bridge that is also a server can prevent your request/claim from being distributed throughout the network
 • Use MRP block address for this request process?
BA Questions – Where do these go?

- MSTP is the best place to determine like minded devices (for AVB and CN) and this should be handled in the BPDUs?
- A TPMR needs to support 802.1AS between its ports if it wishes to be an AVB link (or it will look like a buffered repeater)
- 4/2/08 call - Specify STP for 802.11 so that it doesn’t suffer from the time delays normally encountered with ‘dumb yellow coax shared media’ so reconfiguration is faster than 2 to 6 sec?
- 4/2/08 call - Use Bonjour for stream MC address acquisition (1722 is looking at using this by requesting a block of addr), or use a new layer 2 DHCP type of server, or allocate bridges a unique ID to use in a MC OUI?
 - 4/2/08 call - Start out with a request & claim, and then you get a response which could be a defend or it’s an answer from a server that will indicate what address(es) to use. A bridge that is also a server can prevent your request/claim from being distributed throughout the network.
 - Use an MRP block address for this request protocol?
802.11 Requirements \textcolor{red}{(11\text{aa}/avb)}

- **Link Speed**
 - 802.11: 100 Mbits or faster?
- **Link Duplex**
 - 802.11: Half Duplex (no choice)
- **Maximum Frame Size (Layer 2 bytes – DA through CRC)**
 - 802.11: 1088 bytes for AVB Class A (depending on the speed of the link)?
 - 1522 bytes? Or 2000 bytes for Legacy frames? (i.e., no Jumbo frame support)
- **Link Level Flow Control**
 - 802.11: Won’t be allowed
- **Precise Timing Protocol**
 - 802.11v location/time measurement is required
- **AVB 802.11 devices must support 802.1 bridging**
Other Issues *(AVB)*

- **802.1AE Environments *(in Qat/AS)***
 - Any AVB Streams and PTP & SRP frames can be AE Tagged
 - Implementation detail… but we already want 802.3 to give us timing information!

- **PONs are currently not specifically supported *(Qat/Qav?)***
 - i.e., PON support is dependent on contributions from those that need it and may need to become part of a separate PAR

- **Provider Networks are currently not specifically supported *(BA)***
 - i.e., Provider Network support is dependent on contributions from those that need it and may need to become part of a separate PAR

- **Other Assumptions …**
 - (this is a growing work in process)
References

- Ref 1: at-pannell-policies-0707-v04
 - Title: 802.1 Qat Policies Proposals
- Ref 2: as-garner-assumptions-for-error-sources-time-synch-0507-v03
 - Title: Assumptions for Sources of Time Synchronization Error in IEEE 802.1AS
- Ref 3: avb-garner-requirements-summary-r4-060217
 - Title: Summary of AVB Bridging Network Requirements
- Ref 4: avb-dvj-white-paper-060306
 - Title: Residential Ethernet (RE) (a working paper)
- Ref 5: av-mjt-max-delay-0308-v1
 - Title: Max Delay in Ethernet Networks
- Ref 6: at-nfinn-delay-bw-parameters-0508-v06.pdf
 - Title: P802.1Qat Delay and Bandwidth Parameterization