DCBX Goals

• Discover DCB capabilities of peer

• Identify configuration problems
 – Exchange relevant configuration of DCB features with peer
 – Defend as appropriate (e.g. disable the DCB feature)
 – Notification of issues

• Provide for “negotiation” of DCB features
 – One peer can take its DCB configuration from the other
DCBX Services (End Station perspective)

Applications need to know whether and when required features are operational on the Link

- don’t start up if specific features are not configured correctly
 - peer-to-peer configuration (e.g. peer is going to honor PFC)
 - cross feature configuration (e.g. App setting is consistent with PFC setting)

- avoidance of reconfiguration thrash
 - e.g. Baseline DCBX – only changes operational state when ‘synced’

- detection of operational transitions
 - not just locally but on the peer as well
 - when should a notification be generated

- “plug-and-play” ability
 - start up an End Station and it will learn and adapt to the DCB network by default

- manual override option
Result: Baseline DCBX Proposal

The required goals and services of DCBX, plus the general principle that it would be “bad” to have a misconfigured DCB feature on a link:

- Feature is “on” only if both sides have a consistent configuration
- Otherwise feature should be off on both sides

Resulted in the Baseline DCBX Proposal

- Control State Machine - SeqNo/AckNo for syncing with peer
- Management bits (Advertise, Willing, Enable)
- Feature state machines (managing Operational State, synced state)

Reference:
 - az-wadekar-dcbxcapability-exchange-discovery-protocol-1108-v1.01.pdf
The End Result

• Retain the DCBX concept and name
 – “Everyone” is talking about it/expecting it

• Continue to achieve the goals and services provided by the Baseline DCBX proposal
 – Plus more

• Simplified specification
 – Top down (rework the Baseline proposal) vs. Bottom up (Joe’s work)
Thanks!