Embedding VNTag functionality into the SecTAG

Paul Congdon
IEEE 802.1 Interim – New Orleans
1/15/09
Objectives

• Show how the capability proposed by the VNTag can be included in the MACSec SecTAG.
• Demonstrate the advantages of using the SecTAG over creating an entirely new tag
• Discuss compatibility of SecTAG changes with current MACSec specification
Background
Existing MACSec use model

- MACSec has a model for virtual ports today
- Could be used ‘without’ crypto for the same purpose

Figure 11-15—An example multi-access LAN
Current Use Model
Bridge Virtual Ports

Bridge

Physical Station
Physical Station

Virtual Station (VSA)
Virtual Machine
Virtual Machine

IEEE 802.1 Interim – New Orleans – Jan 15, 2009
VNTag Proposal

<table>
<thead>
<tr>
<th>Ethertype</th>
<th>d</th>
<th>p</th>
<th>Dvif_id or vif_list_id</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>l</td>
<td>r</td>
<td>ver</td>
</tr>
</tbody>
</table>

Ethertype: TBD, identifies the VNTag

d: Direction, 0 indicates that the frame is traveling from the IV to the bridge. 1 indicates the frame is traveling from the bridge to the IV

p: Pointer: 1 indicates that a vif_list_id is included in the tag. 0 indicates that a Dvif_id is included in the frame

vif_list_id: Pointer to a list of downlink ports to which this frame is to be forwarded (replicated)

Dvif_id: Destination vif_id of the port to which this frame is to be forwarded. Two most significant bits are reserved.

Note: the Dvif_id / vif_list_id field is reserved if d is 0.

l: Loop: 1 indicates that this is a multicast frame that was forwarded out the bridge port on which it was received. In this case, the IV must check the Svif_id and filter the frame from the corresponding port

r: reserved

ver: Version of this tag, set to 0

Svif_id The vif_id of the downlink port that received this frame from the VNIC (i.e. the port that added the VNTag). This field is reserved if d=1 and l=0.
Proposed VNTag Scope

- VNTag Inserted/Removed Here
- VNTag Removed/Inserted Here
- Security + VNTag
- Local Link Only (VNTag Inside)
- Note: three stacked tags may be required to combine
- End-to-End (VNTag Outside in clear)

IEEE 802.1 Interim – New Orleans – Jan 15, 2009
VNTag embedded in SECTag

V := Version bit (V=1)
ES := End-Station (ES=1)
SC := SCI included (SC=1)
SCB := Single copy broadcast (SCB=1)
E := Encryption (E=0)
C := Changed Text (C=0)
AN := Association Number (AN=00)
SecTAG Scope
Always just a single tag

- SecTAG Inserted/Removed Here
- SecTAG Removed/Inserted Here
- Soft MACSec Maybe Supported Here

Crypto Scope Options
- Local Link Only
- VEPA End-to-End
- Host End-to-End

IEEE 802.1 Interim – New Orleans – Jan 15, 2009
Advantages of SECTag for virtualization

• Works exactly like VNTag when not using crypto
• Current use of MACSec supports tagless VEPA mode
• Bridge only needs one method of identifying virtual ports
• Supports ability to augment virtual port-ids with a ‘secure’ port-ids and use crypto to protect them
• Allows end-points to create multiple virtual ports within their domain (as done today)
• Only uses one tag header
• Does not leave parts of the frame unprotected and detects any modifications
• Enables convenient ‘inline’ implementations of MACSec crypto
Compatibility with Existing MACSec

• Existing MACSec compatible with tagless VEPA
• Existing MACSec establishes bridge virtual ports
 – Identified by v=0
 – VEPA must map full SCI to virtual interface
• SecTAG for virtualization has structured SCI
 – Identified by v=1
 – Entity inserting SecTAG must be told what SCI to use
• SecTAG for virtualization can share inline crypto function
 – Identified by v=1
 – SecTAG is already inserted
• Current bump-in-the-wire MACSec may not expect SecTAG to already have been appended
 – May be identified by v=1
Conclusions

• A single method of identifying virtual ports is possible using just the SecTAG
• SecTAG without crypto is equivalent to VNTag with slightly more bits of overhead
• There are several flexible ways to ‘turn-on’ security in addition
• Compatible with existing MACSec implementations (v=0).
• Modest changes to 802.1AE required (see: new-congdon-vepa-1108-v01.pdf in Docs 2008)
MACSec Frames

Note: ICV always present
SecTAG Control Information

V := Version bit (v=0)
ES := End-Station
SC := SCI included
SCB := Single copy broadcast (EPON)
E := Encryption
C := Changed Text
AN := Association Number

• Version is 0, but if necessary could bump to 1 and define additional bits (not desired)
• End-Station bit needs to be 0 to allow SCI to be used to encode source virtual port number
• SCI must be included to allow 8 bytes of SCI to be included
• Single copy broadcast can only be used when SC is 0, but we need SC to encode port group
• Encryption may or may not be used as desired, but ICV is always included
• Changed Text is only set if the user data has been encrypted