Motivation & Approaches for Edge Virtual Bridging or NIC Aggregation

January 2009

Chuck Hudson (HP) c.hudson@hp.com
Paul Congdon (HP) ptcongdon@ucdavis.edu
Joe Pelissier (Cisco) jopeliss@cisco.com
Possible Motivations

1. Need simple aggregation capability to be integrated into new NICs
 a. PCI Virtual Functions (VFs) bypass vSwitches
 b. Shared PCI IO virtualization (IOV) Ethernet devices

2. Allow bridge control of vNIC network connectivity

3. Create stand-alone edge devices that surrender bridging features to a higher level bridge device
PCI Device Evolution

PCIe Device
- Physical
 - Data Link
 - Transaction Layer
 - Device Specific Functionality

SR-IOV PCIe Device
- Physical
 - Data Link
 - Transaction Layer
 - VF0
 - VF1
 - ... VFN
 - Device Specific Functionality

MR-IOV PCIe Device
- Physical
 - MRA Data Link
 - MRA Encapsulation
 - Transaction Layer
 - PF0
 - PF1
 - ... PFN
 - VF0
 - VF1
 - ... VFN
 - Device Specific Functionality
Motivation 1-a

PCI Virtual Functions (VFs) Bypass vSwitches

- Each VM has some number of vNICs
- PCI VFs provide direct vNIC access to hardware queues and improve IO performance
- Direct access bypasses the software vswitches
- Something needs to replace the software vswitches to control Ethernet frame flow and packet replication.
- Full embedded bridges are problematic
 - Expensive (gates & management processor complexity)
 - Puts NICs on 802.1 feature tread mill
- Need a solution that allows for simple NIC hardware
Motivation 1-b
Shared PCI IO Virtualization Devices

• PCI has technologies that allow device sharing
 – A single physical device can contain the NICs (really vNICs) for multiple physical servers.

• Something must be done to converge these (v)NICs onto a single link to the network infrastructure.

• Full embedded bridges are problematic
 – Expensive (gates & mgmt processor cycless)
 – Puts NICs on 802.1 tread mill

• Need a solution that allows for simple NIC hardware
Motivation 2
Allow bridge control of vNIC network connectivity

- Virtual Machine environments must provide network access to the individual guest operating systems
- VM environments are typically owned by "server admins"
- Allowing consistent control of network access for single-OS physical servers and individual virtual machines simplifies data center management.
- Need a solution that allows edge bridges to control virtual machine network connections in the station.
Motivation 3
Provide increased fan-in / fan-out for core switches

- Extend core/distribution switch to edge
 - Control and functionality remain in core/distribution devices
 - Provides full capability scaling in a more cost effective manner
 - Reduced number of managed nodes / Cost of ownership
 - Simplified and more flexible VM migration
Summary of Possible Technical Approaches

Virtual Ethernet Bridge (VEB)
- Emulates 802.1 Bridge
- Limited controls
- Managed by station
- Works with all existing bridges
- No changes to existing frame format.
- Open-ended changes to NIC

Tag-less VEPA
- Extends 802.1 Bridge
- Advanced controls
- Managed by bridge
- Works with many existing bridges
- No changes to existing frame format.
- Limits NIC changes

Tagged
- Extends 802.1 Bridge
- Advanced controls
- Managed by bridge
- Works with few or no existing bridges
- Changes to existing frame format.
- Limits NIC changes
Elements of a solution

• Frame format and flow
 – Tagged vs. tag-less approach
 – If tagged, the tagging approach
• Requirements for controlling bridge
• Requirements for virtual bridging device
• Discovery/control protocol
Discovery/Control

Controlling Bridge

Virtual Bridging Device

Establish link (including security)
Discover capabilities, agree on mode
Information exchange (# ports, etc.)
Configuration/control of ports
Port status changes, statistics

10 15-Jan-09 new-dcb-hudson-niv-motivation-0109.ppt
Call to Action

• Obtain consensus on the need for a virtual bridging effort
• Invite interested parties to participate in the generation of a PAR and 5 criteria proposals