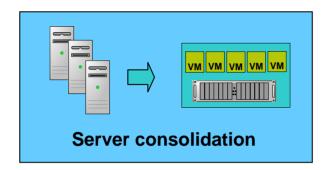
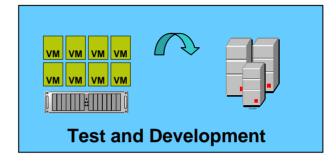
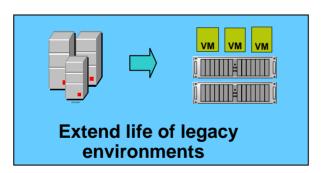


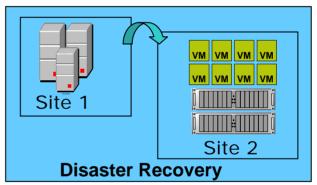
Virtual Bridging considerations from Server perspective

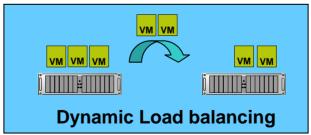
Ilango Ganga

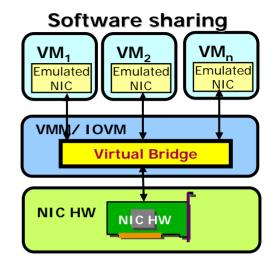

Jan 15, 2009

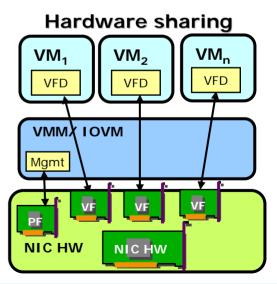

Outline


- Server Virtualization concepts
- Virtual Ethernet Bridging evolution
 - Server based
 - Emulated Virtual Bridging in VMM/IOVM
 - Embedded Virtual Bridging in NIC
 - Network based
 - Virtual Bridging in Network Access Bridge
- Virtual bridge management
- Problem statement
- Considerations for IEEE Standardization
- Summary



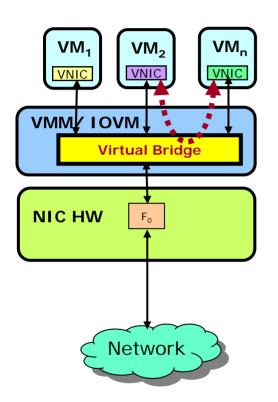

Server virtualization Usage Models

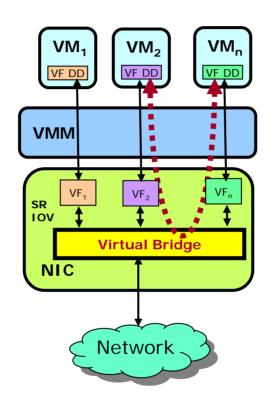




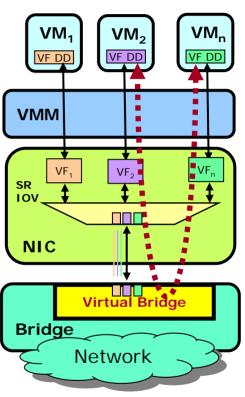
Server I/O Virtualization concepts

- Virtualization is the creation of a number of different execution environments on a single computer
 - The execution environments are called Virtual Machines (VM)
 - A VM has it's own operating system and resources
- A software layer that creates and maintains the Virtual Machine environment is called a Virtual Machine Monitor (VMM)
 - VMM provides capabilities such as NIC emulation, VM migration, and Virtual bridging functionality
- Virtual bridging allows software sharing of a hardware NIC between multiple VMs
- PCI-SIG SR-IOV provides a standard mechanism for hardware sharing of I/O devices





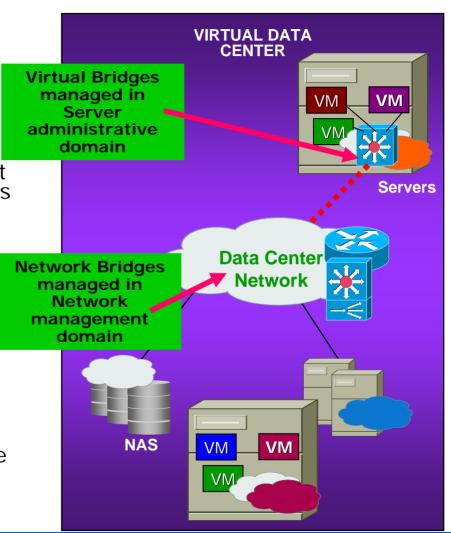
Virtual Bridge evolution


2008 2009

Virtual Bridging in VMM or LOVM

Virtual Bridging in NIC

Virtual Bridging in Network Access Bridge


Note: See <u>new-dcb-ganga-virtual-bridging-in-server-end-stations-0908.pdf</u> for further details of each model

Three Virtual Bridging models expected to coexist

Virtual Bridge Management

- Virtual Bridges managed by Server Administrators
- Network bridges managed by Network Administrators
 - Data Center Network policies may not be uniformly applied to Virtual bridges
- Need for uniform application of Network and Security policies
 - For example access control
- Management information sharing between Network & Server domains
 - For example consistent application of policies incase of VM migration
 - Coexistence of different Virtual Bridge models

Problem statement

- Need for uniform application of network and security policies across virtual bridges in servers and network bridges
 - Option to manage virtual bridges as part of network infrastructure
- Two possible ways to solve it
 - Add features and management to server based virtual bridges
 - Move virtual bridging functions to external network access bridges (virtualization aware network bridges)

Proposals for consideration to IEEE 802.1

- Several presentations made from Jul'08 to establish the need for virtual bridge standardization
- Multiple solutions proposed to IEEE 802.1 for network based virtual bridging
- Need to agree on the problem statement and high level goals (discussions in progress)
 - We need to move ahead

Considerations for Virtualization aware network bridge Standardization .. (1)

- Multiple Virtual Bridging models expected to coexist in future
 - Solutions to comprehend interoperability with existing models
 - For example a server based virtual bridge might coexist with a network based virtual bridge
 - Multi-tiered deployments
- Compatibility with existing and future IEEE 802.1 bridging standards
 - Interoperability with emerging Data Center Bridging standards
 - Security functions such as port based access control (802.1X), and MACsec (802.1AE)
 - Consistent MIBs
- Backward compatibility with deployed network bridges and server based virtual bridges
- Server and network management domains to coexist
 - Some management functions to remain in server administrative domain
 - Comprehend sharing of management information between two administrative domains (Server management and Network Management)

Considerations for Virtualization aware network bridge Standardization .. (2)

- Solutions to preserve existing functions such as VM migration
 - Provide bridge transparency for functions such as VM migration
 - Consistent virtual port properties associated with virtual NICs (or VFs)
 - Migration could happen across bridging models
- Virtualization of Server & Bridge ports
 - Need for consistent representation of "virtual ports" between Servers and network bridges
 - To work with HW based sharing (SR-IOV) & software sharing (Virtual NIC)
- Discovery and protocol for configuration and management
 - Protocol for configuration and management between servers and network access switches
- Preserve existing Virtualized Server functionality, for example:
 - "teaming" of multiple links
 - Allocation of bandwidth limits to virtual machines
 - A virtual machine could be a server or an appliance

Summary

Problem statement

 Need for uniform application of Network and Security policies across virtual bridges and network bridges

Standardization considerations

- Server based, and Network based Virtual bridging models expected to coexist and hence new models to interoperate with existing and deployed models
- Compatibility to existing Server virtualization functions such as VM migration across Virtual Bridge models
- Protocol for discovery and management
- Need for consistent exchange of management variables between server and network management
- Compatibility with existing and emerging IEEE 802.1 standards as applicable

