
111

VNTag 101

Joe Pelissier
jopeliss@cisco.com
new-pelissier-vntag-seminar-0508

222new-pelissier-vntag-seminar-0508

Agenda

� Motivation, Problem Statement, and Requirements

� An Approach

� The Path to Tagging

� The VNTag Proposal

� VNTag Addressing Examples

� Case Studies

� Coexistence of VEB and IV / VEPA

� A Call for Interest

� Summary

333new-pelissier-vntag-seminar-0508

Motivation

ServerServer ServerServer ServerServer

C
o

m
p

le
x
ity

Q
u

a
n

tity

As a general rule, we push
complexity up into the components
of which we have fewer (bridges),

and attempt to simplify the
components that appear in higher

quantities (NICs)

N
IC

N
IC

N
IC

N
IC

N
IC

N
IC

444new-pelissier-vntag-seminar-0508

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

As virtualization and high
density servers are deployed,
we increase the number of

complex bridges in excess of
what use to be considered a

large number of NICs

VNICs VNICs

Even without virtualization,
the same challenges exist.
The sheer number of blade
racks and 1U servers with
their associated bridges is

growing dramatically

555new-pelissier-vntag-seminar-0508

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

Goal: Extend the bridge into the blade racks
and hypervisors, reducing the number of these

complex devices.
Method: Define an “Interface Virtualizer” (IV)

that extends the bridge’s reach.
IVs are much greater in quantity than bridges,

therefore must be much simpler.

VNICs VNICs

666new-pelissier-vntag-seminar-0508

Motivation

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

C
o

m
p

le
x
ity

Q
u

a
n

tity

Deployment will require
support of a mix of Interface
Virtualizers, NICs & Bridges

(including VEBs)
N

IC

N
IC

VNICs VNICs

It is insufficient to address only
the “embedded” portion of the

problem. A solution that addresses
both the embedded bridges,

external bridges, virtualization
needs, and diverse deployment
scenarios in a unified fashion is

required.

777new-pelissier-vntag-seminar-0508

Problem Statement

� The deployment of hundreds to thousands of bridge devices
with diverse capabilities and performance as a result of high
density server technology (including but not limited to server
virtualization) creates the following challenges that are
addressed by the proposed technology:

High network management complexity and administrative cost

High initial capital expenditures

Stressed scalability limits and responsiveness of network
management applications due to:

Volume of points of management

Volume of management messages required

� Addressing just the embedded bridge in virtualized servers is
insufficient to address the overall problem

Both embedded and external bridges contribute to the problems

One problem, one solution

888new-pelissier-vntag-seminar-0508

Some Initial Thoughts

� There are essentially two proposals to be considered:

Tagged: VNTag

Untagged: VEPA

� Each provide certain capabilities

� Our goal is to analyze the each proposal to determine which
provides the greatest benefit to cost ratio

This presentation will show the significant advantages that the
tagged approach provides

Detailed information on the VNTag proposal is provided; however,
the main focus is to contrast tagging vs. non-tagging in general

Details of tagging can be worked out later…

999new-pelissier-vntag-seminar-0508

Requirements Summary

� Must provide the same behavior to the station (i.e.
NIC or VNIC) that is provided today by bridges

Fundamental to interoperability

Deviating from such behavior opens the door for
unforeseen consequences

Extremely undesirable to require applications to be aware
of whether they are directly connected to a bridge versus
an Interface Virtualizer (or VEPA).

101010new-pelissier-vntag-seminar-0508

Requirements Summary

� Must be simple

Drive complexity towards the bridge and simplicity towards the NIC

For example, ACL processing, CAM lookups, learning and aging functions,
etc.

Complexity should be limited to fewer devices

Simplifies management

Lowers TCO

Simplifies upgrades

Etc.

Avoid “two solutions to one problem issue”

Consensus the VEB is a useful device

If we develop a device of similar complexity, cost, and management, there is
little point

Simplicity provides the differentiation for use in the appropriate segments

111111new-pelissier-vntag-seminar-0508

Requirements Summary

� Must operate in a variety of configurations

Downlinks must be able to connect to other Interface Virtualizers,
bridges including VEBs, and NICs

These devices may be virtual, instantiated together, or physically
separate

Focus specifically on the embedded function in an virtualized
environment addresses only part of the problem

Forcing us to address the external portions of the fabric with yet
another solution

� Must operate with existing applications and those in the
foreseeable future, for example those:

That utilize various forms of ACLs

That depend on VLAN enforcement

That utilize MAC addresses other than those assigned by a
hypervisor

121212new-pelissier-vntag-seminar-0508

Requirements Summary

� Must efficiently support embedded bridging

For example, VEB

Neither VNTag nor VEPA are appropriate for all
applications

� Must efficiently support converged networking

These technologies expect certain functions commonly
available in bridges today

VLAN enforcement, locally assigned MAC addresses, basic
ACL capabilities, static forwarding entries, etc.

Must ensure these capabilities carry forward

131313new-pelissier-vntag-seminar-0508

Requirements Summary

� Must provide simple and efficient management capabilities

Reducing “points of management” is a good start

However, if a “point of management” must initiate additional
management messages, little has been gained

Must provide predictable and consistent capabilities

e.g. reduce fabric dependencies for VM migration and converged
networking

Reduce the number of devices that are “touched” by a
management operation

� Must be cost effective

Otherwise there is no point…

The cost vs. benefit must be superior to other approaches

� Must minimize changes to bridge architecture

No need for invention for its own sake

Reuse proven technology and methods

141414

An Approach

151515new-pelissier-vntag-seminar-0508

An Approach

� VNTag proposes to meet the previously stated requirements
by providing a capability to combine distributed network
components into a single logical 802.1Q compliant bridge

� These components consist of:

A centralized Controlling Bridge

Distributed Interface Virtualizers (that may be cascaded)

A protocol enabling control of the Interface Virtualizers by the
Controlling Bridge

� The set of the Controlling Bridge and the Interface Virtualizers
form a single 802.1Q compliant bridge

161616new-pelissier-vntag-seminar-0508

An Approach - Anatomy of an VNTag Fabric

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

IV Uplink Port: may
connect to an IV capable
bridge or an IV downlink

Bridges that connect to IV
Uplink Ports must be IV
capable (e.g. support the
VNTag and the VIC Protocol).

IV Downlink Port: may
connect to an IV Uplink
Port, a bridge or VEB, or a
NIC (virtual or physical).
Note that the bridge does
not need to be IV capable
in this case.

IVs may be cascaded. In
this case, the Downlink
Ports (virtual in this
example) act as ports of
the top level bridge.

Downlink ports are
assigned a Virtual
Interface Identifier (vif_id)
that corresponds to a
virtual interface on the
bridge and is used to route
frames down through IVs

Note: multiple Uplink Ports
connected to different
bridges or IVs are supported
and are described later in
this presentation.

171717new-pelissier-vntag-seminar-0508

An Approach - Observations

� To the greatest extent possible, all bridging functions are performed in the
Controlling Bridge

Many bridging functions require knowledge of the ingress and/or egress port. A tag
provides this information

� The ports on the south side of an IV are physical ports

You can see, touch, smell, and taste them

If you plug a network analyzer into one, it will see an 802.1Q compliant bridge

The tags are limited between the IV and Controlling Bridge, so you would never see
one at this point

Inserting an IV is similar to inserting a line card

New ports are instantiated in the Controlling Bridge just as if a line card was inserted

These ports are managed just as if they were part of a new line card

There is nothing virtual about it!

� The ports of an embedded IV may be “virtual”

That is, they are conceptual and connect to a conceptual NIC (commonly referred to
as a virtual NIC).

However, from the point of view of the Controlling Bridge and management of these
ports, they are handled just like any other port

181818

The Path to Tagging

Tagging is a natural extension of Bridge Functionality

191919new-pelissier-vntag-seminar-0508

The Path to Tagging

Ingress Side of

Line Card

Frame

Processor

Memory

Control

VOQs

Crossbar Egress Side of

Line Card

Frame

Egress

Processing

Port

4

Port

8

Frame enters here,

smac=abc, dmac=xyz,

vlan=123.

Internal tag

added,

sport=4

Frame processor performs several

operations in parallel:

- smac, vlan, sport learned

- Ingress VLAN verified to be part of

member set for sport

-Ingress ACLs processed based on

sport and frame header

- dmac, vlan lookup performed to

determine dport=8

- internal tag updated with dport

Crossbar forwards

frame based on dport

-Egress ACL processed

based on sport, dport,

& frame contents

-Frame rewrite takes place (IP

related, add / delete QTag, etc.)

-Frame transmitted on port 8 based

on dport

202020new-pelissier-vntag-seminar-0508

The Path to Tagging

Ingress Side of

Line Card

Frame

Processor

Memory

Control

VOQs

Crossbar Egress Side of

Line Card

Frame

Egress

Processing

Ingress

Path IV

Ingress

Path IV

Ingress

Path IV

Egress

Path IV

Egress

Path IV

Egress

Path IV

Vif

22

Port

4

Port

8

Vif

47

Frame enters here,

smac=abc, dmac=xyz,

vlan=123.

IV adds VNTag,

svif=22, dvif=0

IV forwards

frame

unmodified

Internal tag

added,

sport.svif=4.22

Frame processor performs several

operations in parallel:

- smac,vlan, sport.svif learned

- Ingress VLAN verified to be part of

member set for sport.svif

-Ingress ACLs processed based on

sport.svif and frame header

- dmac, vlan lookup performed to

determine dport.dvif=8.47

- internal tag updated with dport.dvif

Crossbar forwards

frame based on dport

-Egress ACL processed

based on sport.svif, dport.dvif,

& frame contents

-Frame rewrite takes place (IP

related, add / delete QTag, VNTag,

etc.)

-Frame transmitted on port 8 based

on dport

Frame forwarded

to next hop IV

based on dvif=47

Frame forwarded

to egress IV port

based on dvif=47,

VNTag removed

212121new-pelissier-vntag-seminar-0508

The Path to Tagging - Observations

� When a frame enters a bridge, it is internally “tagged” with an indication of
the ingress port

� The ingress port is used in several frame processing operations, ultimately
resulting in determination of the egress port, which is added to the internal
tag

� The rest of the forwarding through the bridge is performed based on the
internal tag

� At egress, egress ACL processing is performed based on ingress port,
egress port, and Frame Contents (on a per egress port basis for multicast).
Frame processing adds or removes a QTag, and potentially other packet
rewrite functions

� With VNTag, all of the fundamental bridge functionality remains identical

Which is a very good thing ☺☺☺☺

From the outside world, the combination of IVs and the controlling bridge is a single
802.1Q compliant bridge

� The IVs are extremely simple

On ingress, add a tag, then forward north

Southbound, forward based on vif_id as index into forwarding table

Remove VNTag at a last hop

222222

The VNTag proposal

232323new-pelissier-vntag-seminar-0508

IV Downlinks & Virtual Interface Identifiers

� Each downlink from an IV to a NIC, VNIC, bridge, or
VEB is, in effect, a bridge interface

These are the instantiations of interfaces of the Controlling
Bridge

Each downlink identified by a 12-bit Virtual Interface
Identifier (vif_id)

Assigned by the bridge to each IV downlink port at IV
initialization

Scope of uniqueness is the Controlling Bridge Port

242424new-pelissier-vntag-seminar-0508

IV Forwarding Tables

12 Bits – vif_id
(from VNTag)

4 bits – Dport (vif_id = 0)

4 bits – Dport (vif_id = 1)

4 bits – Dport (vif_id = 2)

4 bits – Dport (vif_id = 4095)

A
d

d
re

s
s

Dest Port

�VIF forwarding table (used for unicast)

One entry per VIF_ID

May support up to 4096 unique VIF_IDs

Indexed by Dvif_id (part of the VNTag)

Each entry points to the downlink to be used

�Vif list table (used for multicast and flooding)

One entry per vif_list_id

May support up to 16k unique lists

Indexed by vif_list_id

Each entry contains a bit mask indicating
which downlinks are to be used

Width of entry depends on number of
downlink ports

�Note: Table size not a function of VLANs / MAC
addresses in use

Each interface utilizes a single entry regardless of the number
of VLANs and / or MAC addresses in use on that interface

14 Bits – vif_list_id
(from VNTag)

n bits – Dportmask (vif_list_id = 0)

n bits – Dportmask (vif_list_id = 1)

n bits – Dportmask (vif_list_id = 2)

n bits – Dportmask (vif_list_id = 16383)

A
d

d
re

s
s

Dest Port Mask

252525new-pelissier-vntag-seminar-0508

Interface Virtualizer Basic Functions

� From NIC to Controlling Bridge

Add VNTag if none present (indicating source vif_id)

VNTag added only at ingress

VNTags are not “stacked” as the frame passes through successive IVs

Forward frame up the IV hierarchy to the Controlling Bridge

� From Controlling Bridge to NIC

Froward frame down hierarchy to the NIC

Destination port determined by using Dvif_id as index into the forwarding
table

Replicate multicast frames

Filter the frame at the ingress port if it was sourced at the IV

(i.e. if the port’s assigned vif_id matches the source vif_id in the VNTag)

Remove the VNTag if the final downlink has been reached

262626new-pelissier-vntag-seminar-0508

Bridge use of VN_Tag

� On ingress

Learn vif_id along with MAC address, VID, and port number as part of
normal bridge learning function

� Forwarding

Utilize source vif_id along with ingress port number as frame source for
all normal bridge functions (ACLs, VLAN member set enforcement, etc.)

� On egress:

Populate the VNTag with the source and destination vif_ids

272727new-pelissier-vntag-seminar-0508

Support of Bridge and other PDUs

� The set of a Controlling Bridge and its Interface Virtualizers form an
802.1Q compliant bridge

Implies that the Controlling Bridge must have the ability to send arbitrarily
addressed protocol frames to specific IV egress ports (e.g. BPDUs), and
to identify from which port these frames were received (independent of
source MAC address)

Solution:

For transmission, address the protocol frame as appropriate, and direct it to
the desired IV egress port with an appropriate VNTag

On reception, the VNTag provides the identity of the port from which the
frame was received

� Note: this is the same function that is performed internal in bridges
today

Every frame received by the bridge’s control processor is somehow
marked with an ingress port number indication

Every frame transmitted by the bridge’s control processor is somehow
marked with an egress port number inidcation

282828new-pelissier-vntag-seminar-0508

Support of Multiple Uplink Ports

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

� Required for:

Redundancy

Support of multiple fabric connectivity

� Achieved by:

Instantiating a VIF forwarding table and VIF
list table for each uplink port

Addresses “Southbound” frames

Each downlink port is associated with a
single uplink port

All frames received on that downlink port
are forwarded to the associated uplink port

Addresses “Northbound” frames

292929new-pelissier-vntag-seminar-0508

Additional Interface Virtualizer Functions

� QTags are always present on uplinks

On IV ingress, if QTag not present

Add QTag with VID=PVID and Pri=0

If Priority Tagged, insert PVID into QTag

On IV egress, if egress port is in VIDs untagged set

Remove QTag

Note: in actual implementation, it is allowable and common to support a
single untagged VLAN per egress port. In this case, the QTag is removed if
the VID matches the programmed value for that port (often this is simply the
port’s PVID value).

� DCB Functions

Priority-based Flow control

Enhanced Transmission Selection

Congestion Notification

DCBX: Provided by Controlling Bridge

� Advanced Functions

None: Interface Virtualizers are simple

303030new-pelissier-vntag-seminar-0508

VNTag Proposal

Ethertype d p Dvif_id or vif_list_id
l r ver Svif_id

Ethertype: (16 bits), TBD, identifies the VNTag

d: Direction (1 bit), 0 indicates that the frame is traveling from the IV to the bridge. 1
indicates the frame is traveling from the bridge to the IV

p: Pointer (1 bit): 1 indicates that a vif_list_id is included in the tag. 0 indicates that a
Dvif_id is included in the frame

vif_list_id: Vif List Pointer (14 bits), points to a list of downlink ports to which this frame is to be
forwarded (replicated)

Dvif_id: Destination vif_id (2 reserved bits, 12 used bits) of the port to which this frame is to
be forwarded. Two most significant bits are reserved.

Note: the Dvif_id / vif_list_id field is reserved if d is 0.

l: Looped (1 bit): 1 indicates that this is a multicast frame that was forwarded out the
bridge port on which it was received. In this case, the IV must check the Svif_id and
filter the frame from the corresponding port

r: (1bit) reserved

ver: (2 bits) Version of this tag, set to 0

Svif_id The vif_id (12 bits) of the downlink port that received this frame from the VNIC (i.e.
the port that added the VNTag). This field is reserved if d=1 and l=0.

313131new-pelissier-vntag-seminar-0508

Virtual Interface Control (VIC) Protocol

� Controlling Bridge configures all of the forwarding tables for
each downstream (i.e. cascaded) IV

Occurs at IV initialization

No additional programming required as the result of MAC learning
/ aging, or MAC migration as the result of VM migration

� VIC Protocol provides this functionality

Low overhead reliable L2 transport

All messages are command / response

All commands are idempotent enabling repeatability if command or
response is lost

Independent instance of VIC is executed for each Uplink Port (or
Uplink Port Aggregation)

323232new-pelissier-vntag-seminar-0508

VIC Controller and associated addressing

� VIC Controller is the entity within an Interface
Virtualizer that executes the VIC protocol

� Addressed using its unique MAC address and vif_id

VNTag routes frame through cascade of IVs to proper VIC
Controller

Vif_id assigned to VIC Controller using a “bootstrap”
protocol

DCBX, for example

333333new-pelissier-vntag-seminar-0508

Basic VIC Operations

� Open: Establishes link between bridge and an NIV

� Create: Sent by an IV requesting bridge to create a new interface

� Delete: Sent by an IV requesting bridge to delete an interface

� Enable: Sent by an IV requesting bridge to enable an interface

� Disable: Sent by an IV requesting bridge to disable an interface

� Set: Sent by bridge indicating that a VIF has been enabled and the
state (e.g. vif_id) that is to be used by the corresponding downlink
port in the IV. May also be used by the bridge to inform the IV that an
interface has gone down.

In a cascaded arrangement, a set is sent to each IV in the cascade to
program the forwarding tables

� Get: Sent by bridge or IV to obtain the interface state of a peer

� List set & list get: programs / retrieves the vif list tables in IVs

343434

VNTag Addressing Examples

353535new-pelissier-vntag-seminar-0508

Addressing Examples Overview

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12 MACe MACf

MACh-s

� Top Server has MAC address MACa

� Top bridge has MAC address MACb

� VIC Controller associated with the uplink
in the top IV has MAC address MACc and
interface id vif11

� The downlinks on the top IV have virtual
interface ids vif1 through vif4

� The VIC controllers associated with the
uplinks in the two blade servers have
MAC addresses MACd and MACg and
interface ids vif12 and vif13.

� The two bridges in the blade servers
have MAC addresses MACe and MACf.

� The downlinks on the IVs in the blade
servers have virtual interface ids vif5
through vif10

� Each blade server has three VMs. The
MAC addresses of the VMs are MACh
through MACs from left to right

363636new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

NoMACaMAChA

No

Yes

Yes

VNTag
Present?

MACaMAChD

nonevif5MACaMAChC

nonevif5MACaMAChB

SVifDvifSADALocation

Unicast Frame from Server at MACa to VM
at MACh

A

B

C

D

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

373737new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

NoMAChMACaA

No

Yes

Yes

VNTag
Present?

MAChMACaD

vif5noneMAChMACaC

vif5noneMAChMACaB

SVifDvifSADALocation

Unicast Frame from VM at MACh to Server
at MACa

D

C

B

A

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

383838new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

vif5vif10YesMAChMACsD

vif5vif10YesMAChMACsE

NoMAChMACsA

No

Yes

Yes

VNTag
Present?

MAChMACsF

vif5noneMAChMACsC

vif5noneMAChMACsB

SVifDvifSADALocation

Unicast Frame from VM at MACh to VM at
MACs

DC

B

A

E

F

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

393939new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

nonevif13YesMACbMACgA

Yes

VNTag
Present?

nonevif13MACbMACgB

SVifDvifSADALocation

Unicast VIC control frame from bridge at
MACb to VIC Controller at MACg

A

B

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

404040new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

B

A

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

vif13noneYesMACgMACbA

Yes

VNTag
Present?

vif13noneMACbMACgB

SVifDvifSADALocation

Unicast VIC control frame from VIC
Controller at MACg to bridge at MACb

414141new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

nonevif3YesMACb01-80-
c2-00-
00-00

A

No

VNTag
Present?

MACb01-80-
c2-00-
00-00

B

SVifDvifSADALocation

BPDU from bridge at MACb to bridge at
MACf

B

A

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

424242new-pelissier-vntag-seminar-0508

Addressing Examples

Blade Rack

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

B
la

d
e
 S

v
r.

Server
MACa

MACb

vif1-4

vif5-7 vif8-10

MACe MACf

MACh-s

noneNoMACf01-80-
c2-00-
00-00

A

Yes

VNTag
Present?

vif3NoneMACf01-80-
c2-00-
00-00

B

SVifDvifSADALocation

BPDU from bridge at MACf to bridge at
MACb

A

B

VIC=MACc,
vif11

VIC=MACg,
vif13

VIC=MACd,
vif12

434343

Case Studies

Address Learning and Forwarding:

Transparent Services Example

444444new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study -
Background

� Transparent Services refers to various critical data center
services including:

Firewalls

Load balancers

Intrusion detection and prevention

Policy compliance monitoring

Etc.

� These services are “transparent” in that they do not generate
their own traffic

They are inserted in the network and traffic transparently flows
through them

Thus these services are able to monitor all of the traffic and perform
their respective functions

454545new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
Transparent Service Insertion

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV2 IV3

TServ
VM

Server
VM1

Server
VM2

port1
vif2

port1
vif4

Port2
vif5

Server
VM100

Port 100
vif103

Red
VLAN

Green
VLAN

� The Transparent Service (TServ)
utilizes two VLANs

The Red VLAN contains the
untrusted data between the
gateway and TServ

The Green VLAN contains the
trusted data between the TServ
and all of its clients

� In normal operation, TServ does
not modify the frames passing
through it

On the Green VLAN, the TServ
appears to have the MAC
address of the Gateway

On the Red VLAN, the TServ
appears to be a bridge device
emitting frames with every MAC
address from the Green VLAN

port1
port2

464646new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
Transparent Service Insertion

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV2 IV3

TServ
VM

Server
VM1

Server
VM2

port1
vif2

port1
vif4

Port2
vif5

Server
VM100

Port 100
vif103

Red
VLAN

Green
VLAN

� Upon Initialization, the
IV forwarding tables are
programmed as
indicated.

� These tables remain
static

They are not updated as
new MAC addresses /
VLANs are learned

port1
port2

IV1

0

0

1

0

2

2

2 repeated
98 times

IV2

0

0

1

IV3

0

0

0

0

1

2

And so
on…

100

474747new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
Transparent Service Insertion

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV2 IV3

TServ
VM

Server
VM1

Server
VM2

port1
vif2

port1
vif4

Port2
vif5

Server
VM100

Port 100
vif103

Red
VLAN

Green
VLAN

� During operation, the
Controlling Bridge learns
MAC addresses in the
normal manner

In addition, it learns the
corresponding vif_ids

� The Controlling Bridge
forwarding table will
converge as indicated

Note that the TServ has no
MAC address for itself

(actually it does for
management, etc., but that
is not relevant to this
discussion)

port1
port2

VLAN

Red

Red

Red

Green

Green

Green

MAC

Gateway

SeverVM1

ServerVM2

Port

5

7.2

7.2

7.2

7.4

7.5

And so on for
ServerVM3 – ServerVM100

Gateway

ServerVM1

ServerVM2

Green

Green

7.6

7.7

ServerVM3

ServerVM4

And so on…

Green 7.103ServerVM100

Controlling Bridge Forwarding Table

484848new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
The Untagged Dilemma

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

VEPA1

VEPA2 VEPA3

TServ
VM

Server
VM1

Server
VM2

port1 port1 Port2

Server
VM100

Port 100

Red
VLAN

Green
VLAN

� VEPAs do not learn MAC
addresses

They are told the MAC addresses
by the attached hypervisors

� In this case, the addresses seen
coming out of the TServ were
not assigned by the hypervisor

In fact, they are addresses
assigned by another hypervisor,
but on a different VLAN

� Therefore, an API would need to
be created that would allow a
VM to tell the hypervisor what
addresses it is using

The VNICs are operating in
promiscuous mode, thus these
addresses would not normally be
“configured” by the VM into the
VNICs

port1
port2

494949new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
The Untagged Dilemma

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

VEPA1

VEPA2 VEPA3

TServ
VM

Server
VM1

Server
VM2

port1 port1 Port2

Server
VM100

Port 100

Red
VLAN

Green
VLAN

� Even with the API this is incredibly
inefficient:

For every frame received from the
green VLAN:

-Has hypervisor been informed; if not:

-Delay transmission of frame

-Inform hypervisor

-Hypervisor informs both VEPAs

-Hypervisor informs VM that VEPAs
ready

-TServ then clear to transmit frame

-Meanwhile, frames back up and are
discarded

� Implies TServ must be “VEPA
aware”

Must be prepared to inform
hypervisor of MAC addresses

port1
port2

505050new-pelissier-vntag-seminar-0508

Address Learning & Forwarding Case Study –
The Untagged Dilemma

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

VEPA1

VEPA2 VEPA3

TServ
VM

Server
VM1

Server
VM2

port1 port1 Port2

Server
VM100

Port 100

Red
VLAN

Green
VLAN

� VM migration appears to leave
residual entries in the VEPA

Assume VM2 moves to VEPA4

TServ has no visibility into this move

Therefore, it will not be able to tell
VEPA2 to invalidate the MAC
address on the Red VLAN

Analogous to a memory leak

� Less scalable

Every MAC / VLAN combination that
appears on any VEPA port generates
a forwarding table entry

� From a practical perspective, a
VEPA would need to learn / age to
support this class of applications

� Alternatively, the VEPA could tell the
Controlling Bridge on which port the
frame was received, and allow the
Controlling Bridge to perform
learning in the traditional fashion

port1
port2

515151

Case Studies

Ingress VLAN enforcement:

Transparent Services Example

525252new-pelissier-vntag-seminar-0508

Ingress VLAN Enforcement Case Study - Background

� 802.1Q provides an optional ability, on a per port
basis, to restrict frame admittance to a given set of
VLANs

Each VLAN has a “member set”, i.e. the set of ports that
belong to the given VLAN

If the parameter “Enable Ingress Filtering” is set, then the
ingress port is to perform the filtering.

535353new-pelissier-vntag-seminar-0508

Ingress VLAN Enforcement Case Study –
Transparent Service Insertion

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV2 IV3

TServ
VM

Server
VM1

Server
VM2

port1
vif2

port1
vif4

Port2
vif5

Server
VM100

Port 100
vif103

Red
VLAN

Green
VLAN

� The robustness of this deployment
may be enhanced through the use of
VLAN enforcement:

Port 5 should admit frames only on
the red VLAN

Port 7.2 should admit frames on
either the red or green VLAN

Port 7.4 through 7.103 should admit
frames on only the green VLAN

� Without this enforcement, a Server
could emit / receive frames on the
Red VLAN bypassing the
protections provided by the services

� In the controlling bridge, this is
accomplished by the following
member sets:

Red VLAN – ports 5 and 7.2

Green VLAN – ports 7.2, 7.4-7.103

� Since the frames arrived VNtagged,
the Controlling Bridge can enforce
these sets

port1
port2

545454new-pelissier-vntag-seminar-0508

Ingress VLAN Enforcement Case Study –
The Untagged Dilemma

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

VEPA1

VEPA2 VEPA3

TServ
VM

Server
VM1

Server
VM2

port1 port1 Port2

Server
VM100

Port 100

Red
VLAN

Green
VLAN

� In this case, the controlling bridge
does not know the ingress port; it
cannot apply the appropriate
member set

Note that the MAC address is an
insufficient proxy for this since the
same MAC address appears on
multiple VEPA ports

� Thus, the ingress filtering must be
performed in the VEPA

This is a simple process, but requires
large amounts of memory

e.g. a 4k bit mask for each virtual
port

Note: this cannot be done as part of
the VLAN/MAC lookup function for
several reasons including the fact
that no such lookup is performed
northbound.

� Alternatively, the VEPA could tell the
controlling bridge on which port a
frame was received, and then the
controlling bridge can take care of
the filtering

port1
port2

555555

Case Studies

Access Control Lists: FCoE Example

565656new-pelissier-vntag-seminar-0508

ACL Case Study - Background

� Implementation of Access Control Lists are not standardized
and capabilities vary widely across implementations

� However, ACLs are widely deployed to enhance the
robustness on networks

� In general, ACLs:

Consist of an ordered set of rules that determine if a frame is to
be forwarded (i.e. “permit”) or discarded (i.e. “deny”)

Each rule defined by matching bits in the received frame to a
specified pattern

If multiple rules match, the first in the ordered list applies

Not just pattern matching; implies TCAM or equivalent

A default permit or deny may be specified

May be implemented at ingress, egress, or both

Specified on a per port basis

575757new-pelissier-vntag-seminar-0508

ACL Case Study - FCoE

� FCoE utilizes ACLs to achieve robustness equivalent to native Fibre
Channel

� In FC, it is not possible to “impersonate” another station

All FC devices utilize point to point links between the device and the FC
switch

The FC switch assigns the device a Fibre Channel ID (FCID) at log in

The switch enforces use of that FCID in the source address of all frames
received on that port

� With FCoE, intervening bridges allow multiple devices to appear on a
given FCF port (the FCoE equivalent of a Fibre Channel Switch)

The FCF cannot enforce proper use of the source MAC address

� Impersonation enables attacks that can result in undetected data
corruption and undetected data intercept

These attacks are easily thwarted using the most basic of ACL
implementations

Although processing of an ordered list is required

585858new-pelissier-vntag-seminar-0508

ACL Case Study – FCoE ACL

� To protect against this attack, an ACL is installed at each edge
bridge port that:

Permits frames whose source address matches that assigned by the FCF

Denys frames whose source address matches any other MAC address
assigned by an FCF anywhere in the network

FCF assigned MAC addresses are identified by the fact that the 24 most
significant bits match an FCoE configured constant FC-MAP

� The ACL looks something like this:

SourceMAC = AssignedMACAddress; permit

SourceMAC[47..24] = FC-MAP; deny

(there are other items related to discovery that are not relevant to this case
study)

� The assigned MAC address is discovered via “FIP Snooping” (similar
to IGMP snooping)

The bridge observes the log in responses from the FCF

When the log in response is observed, the “permit” term is added to the
ACL

595959new-pelissier-vntag-seminar-0508

ACL Case Study – The Tagged Environment

IV

IV IV

Good
VM

Evil
VM1

Evil
VM2

vif3 vif4 vif9

Controlling
Bridge

FCF

FC

Storage
Device

Port 5

Port 7

Controlling Bridge ACLs:
Port 7.3:

smac[47..24] = FC-MAP; deny
Port 7.4:

smac[47..24] = FC-MAP; deny
Port 7.9:

smac[47..24] = FC-MAP; deny

� Initial state before Fibre
Channel Login

� The good VM will issue an
FCoE FIP FLOGI, requesting
an FCoE MAC address

� The FCF will respond with the
FCoE MAC address

� The Controlling Bridge
snoops the response, looks
up the destination port (7.3),
and adds the appropriate
entry in the ACL

See next slide

606060new-pelissier-vntag-seminar-0508

ACL Case Study – The Tagged Environment

IV

IV IV

Good
VM

Evil
VM1

Evil
VM2

vif3 vif4 vif9

Controlling
Bridge

FCF

FC

Storage
Device

Port 5

Port 7

Controlling Bridge ACLs:
Port 7.3:

smac = AssignedMAC; permit
smac[47..24] = FC-MAP; deny

Port 7.4:
smac[47..24] = FC-MAP; deny

Port 7.9:
smac[47..24] = FC-MAP; deny

� This shows the updated ACL

� If a frame is received with the
AssignedMAC and tag
indicating it came from port
7.3, it is permitted

� If a frame is received from
any other VM with the
AssignedMAC (or any FCoE
MAC address), it is denied

� Thus, the Evil VMs cannot
use the MAC address
assigned to the good VM

616161new-pelissier-vntag-seminar-0508

ACL Case Study – The Untagged Dilemma

VEPA

VEPA VEPA

Good
VM

Evil
VM1

Evil
VM2

Controlling
Bridge

FCF

FC

Storage
Device

Port 5

Port 7

Controlling Bridge ACLs:
Port 7.idontknow:

smac = AssignedMAC; permit
smac[47..24] = FC-MAP; deny

Port 7.idontknowthiseither:
smac[47..24] = FC-MAP; deny

Port 7.northisone:
smac[47..24] = FC-MAP; deny

� The controlling bridge
enforces ACLs

The controlling bridge does
not have a tag to indicate
from which port the frame
arrived

Therefore, a port specific
ACL cannot be constructed

� How about having the VEPA
enforce source MAC
address?

See next slide

626262new-pelissier-vntag-seminar-0508

ACL Case Study – The Untagged Dilemma

VEPA

VEPA VEPA

Good
VM

Evil
VM1

Evil
VM2

Controlling
Bridge

FCF

FC

Storage
Device

Port 5

Port 7

� Ok, the VEPA could enforce Source MAC
address, and ACLs could use source
MAC address as a “proxy” for the source
port number

� Not so fast...how does VEPA know the
valid addresses for the port?

The hypervisor tells it. How does the
hypervisor know?

It assigns it. BUT, not in this case. The
MAC was assigned directly to the VM by
the FCF

Note: this is not unique to FCoE, the
Transparent Services have a similar
characteristic

The expectation is that the VM will
configure the MAC addresses that it uses
and this will trickle down through the
hypervisor

But wait, we have Evil VMs…

� The chain of trust if fundamentally broken
in this case

� But Wait – Maybe the controlling bridge
should tell the VEPA (after all, its
reasonably trustworthy)

See next slide

Controlling Bridge ACLs:
Port 7.idontknow:

smac = AssignedMAC; permit
smac[47..24] = FC-MAP; deny

Port 7.idontknowthiseither:
smac[47..24] = FC-MAP; deny

Port 7.northisone:
smac[47..24] = FC-MAP; deny

636363new-pelissier-vntag-seminar-0508

ACL Case Study – The Untagged Dilemma

VEPA

VEPA VEPA

Good
VM

Evil
VM1

Evil
VM2

Controlling
Bridge

FCF

FC

Storage
Device

Port 5

Port 7

� Ok, we cannot trust the VMs, since
they may be evil. But the controlling
bridge does the snooping, so it can
tell the VEPA the assigned MAC

But how? It knows the assigned
MAC, but it does not know to which
VEPA port it belongs.

VEPAs do not enumerate ports to
the controlling bridge

We could identify the VEPA port
using a MAC address

But we already determined that VMs
must be able to specify their own
MAC addresses, so we cannot trust
the MAC address as a proxy.

� We could push ACL processing into
the VEPA

This solves the problem technically.
However, ACL processing is very
expensive in transistors, power, etc.
It probably would be much easier for
the VEPA to simply tell the controlling
bridge from which port each frame
was received, and let the Controlling
Bridge deal with the ACLs

Controlling Bridge ACLs:
Port 7.idontknow:

smac = AssignedMAC; permit
smac[47..24] = FC-MAP; deny

Port 7.idontknowthiseither:
smac[47..24] = FC-MAP; deny

Port 7.northisone:
smac[47..24] = FC-MAP; deny

646464

Case Studies

Bridge Stacking:

Stacked Services Example

656565new-pelissier-vntag-seminar-0508

Bridge Stacking Case Study - Background

� VNTag (and VEPA) proposes that all VM to VM
traffic leaves the server, passes through the
controlling bridge, and returns to the server

In many applications, the amount of VM to VM traffic is
small, and therefore the benefits of VNTag far outweigh this
traffic flow characteristic

In other applications, large amounts of VM to VM traffic are
present, and therefore a VEB may be a more appropriate
choice

� This implies that the VNTag devices must co-exist
with VEB (and other bridges)

666666new-pelissier-vntag-seminar-0508

Bridge Stacking Case Study – Stacked Services

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV3

Server
VM1

Server
VM2

port1
vif10

Port2
vif11

Server
VM100

Port 100
vif109

� Transparent Services may be
stacked to provide a
combination of services

In this example, each frame
flows through an Intrusion
Detection, Firewall, and
Compliance Monitor Service

� Clustered services is a
similar example

� In this case, there is
extensive VM to VM traffic
between the services

Therefore, a VEB was
selected for this server

port1
port2

VEB

Intrusion
Detection

Firewall

port1 Port2

Compliance
Monitor

Port 3

Redundant
Bridge

676767new-pelissier-vntag-seminar-0508

Bridge Stacking Case Study – Stacked Services

� A Controlling Bridge and its set of
IVs form a 802.1Q Compliant Bridge

Therefore, physical network on the
left is creates the logical network on
the right

� From the point-of-view of the VEB, it
is simply connected to another
bridge

Spanning tree operates
in the normal fashion
enabling redundancy

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

IV1

IV3

Server
VM1

Server
VM2

port1
vif10

Port2
vif11

Server
VM100

Port 100
vif109

Port1
vif2 port2

VEB

Intrusion
Detection

Firewall

port1 Port2

Compliance
Monitor

Port 3

Controlling
Bridge

Gateway

Port 5

Internet

Server
VM1

Server
VM2

Server
VM100

VEB

Intrusion
Detection

Firewall

port1 Port2

Compliance
Monitor

Port 3

Port
7.2

Port
7.10

Port
7.11

Port
7.109

Redundant
Bridge

Redundant
Bridge

686868new-pelissier-vntag-seminar-0508

Bridge Stacking Case Study – The Untagged Dilemma

Controlling
Bridge

Gateway

Port 5

Port 7

Internet

VEPA

VEPA

Server
VM1

Server
VM2

port1
vif10

Port2
vif11

Server
VM100

Port 100
vif109

� The concept of attaching anything
other than a VNIC or VEPA extender
to a VEPA downlink appears to
beyond the scope of the VEPA
proposal

VEPA cannot direct BPDUs to a
particular port

The VEB would need to speak
“VEPA” to program the MAC
addresses

Hypervisors would need to “reach
through” the VEB to program their
addresses

The controlling bridge would not be
able to identify from which port a
BPDU was received

� This seems overly restrictive
limiting the effectiveness of the new
standard

If a mechanism is provided to allow
the Controlling Bridge to direct a
frame to a given VEPA port, and to
determine from which port frames are
received, these limitations may be
removed

port1
port2

VEB

Intrusion
Detection

Firewall

port1 Port2

Compliance
Monitor

Port 3

Redundant
Bridge

696969

Case Studies

Multicast Egress ACLs:

Service Load Balancing Example

707070new-pelissier-vntag-seminar-0508

Multicast Egress ACL Case Study - Background

Controlling
Bridge

Port 7

IV1

IV2 IV3

Service
VM1

Client
VM1

Client
VM2

port1
vif2

port1
vif4

Port2
vif5

Client
VM100

Port 100
vif103

� Many services advertise
their presence via
messages sent to a well
known group address

An FCoE FCF is one of
many examples

� Egress ACLs are an
efficient and common
way to load balance
between multiple
instances of a service

port1
port2

Service
VM2

port2
vif3

717171new-pelissier-vntag-seminar-0508

Multicast Egress ACL Case Study – Service Balancing

Controlling
Bridge

Port 7

IV1

IV2 IV3

Service
VM1

Client
VM1

Client
VM2

port1
vif2

port1
vif4

Port2
vif5

Client
VM100

Port 100
vif103

� Lets assume that I want SeviceVM1
to serve all even numbered ports
and ServiceVM2 to serve all odd
numbered ports

Simply achieved by creating an ACL
for each egress port, for example:

Port 7.4 (and all even numbered
ports):

dmac=WKA, smac=ServiceVM1; permit

dmac=WKA; deny

For all odd ports:

dmac=WKA, smac=ServiceVM2; permit

Dmac=WKA, deny

� The Controlling bridge achieves this by
allocating two multicast vif_list_ids

One includes all of the odd ports, the other
all of the even ports

The appropriate vif_list_id is chosen based
on the result of the egress ACL processing

port1
port2

Service
VM2

port2
vif3

727272new-pelissier-vntag-seminar-0508

Multicast Egress ACL Case Study – The Untagged Dilemma

Controlling
Bridge

Port 7

VEPA1

VEPA2 VEPA3

Service
VM1

Client
VM1

Client
VM2

port1 port1 Port2

Client
VM100

Port 100

� VEPAs forward based on destination
MAC address

Which happens to be a multicast address in
this case

� However, in this case, the controlling
bridge cannot do the ACL processing

It has no way to inform the VEPAs whether
the frame is to go to even or odd ports

All of these frames have the same
destination MAC address, so it does not
help

� The VEPA could do ACL processing

However, this is very expensive in terms of
transistors, power, etc.

� Alternatively, the VEPA could allow the
Controlling Bridge to due to ACL
processing if it would allow the
Controlling Bridge to provide an alternate
indication of the destination ports

port1
port2

Service
VM2

port2

737373

Case Studies

Comparative Forwarding Logic

747474new-pelissier-vntag-seminar-0508

IV Forwarding Tables

12 Bits – vif_id
(from VNTag)

4 bits – Dport (vif_id = 0)

4 bits – Dport (vif_id = 1)

4 bits – Dport (vif_id = 2)

4 bits – Dport (vif_id = 4095)

A
d

d
re

s
s

Dest Port

Typical IV Implementation

14 Bits – vif_list_id
(from VNTag)

n bits – Dportmask (vif_list_id = 0)

n bits – Dportmask (vif_list_id = 1)

n bits – Dportmask (vif_list_id = 2)

n bits – Dportmask (vif_list_id = 16383)

A
d

d
re

s
s

Dest Port Mask

� The forwarding tables used by Interface
Virtualizers are very simple and have many
desirable characteristics:

The tables are directly indexed, vs. requiring
the table to be searched

The entries are small

A downlink using multiple MAC addresses /
VLANs do not consume additional entries –
enhanced scalability

The entries are static; MAC learning / aging do
not require changes to the tables

Supports direction of arbitrarily addressed
frames

e.g. egress ACL processing of multicast
frames

Delivery of PDUs addressed to well known
addresses

� Additional tables not needed (functionality is in
Controlling Bridge)

MAC / VLAN forwarding table

VLAN member sets

ACLs (and associated TCAM)

757575new-pelissier-vntag-seminar-0508

Forwarding Table – The Untagged Reality

48 Bits – MAC address12 Bits – VID

12 bits - FID 0

12 bits - FID 0

12 bits - FID 0

12 bits - FID 4092

A
d

d
re

s
s

Data

(Note: VID to FID table needed

if IVL/SVL is supported)

48 Bits – MAC address12 Bits – FID 12 Bits – Next Ptr 4 Bits – Dest Port

4096 Entries, for example

A
d

d
re

s
s

MAC AddressFID Next Ptr Dest Port

Comparator

Hash
Generator

Mux

Control Logic

� Without tags, the forwarding table becomes essentially that required by a
bridge:

It becomes necessary to search the table for a given FID/MAC combination

Each entry is large (76 bits in this particular example)

A downlink using multiple MAC addresses / VLANs consume unique entries

4k Entries may be insufficient

The entries not are static; a new MAC / deleted MAC requires table updates

VM migration delayed / complicated

Does not supports direction of arbitrarily addressed frames

e.g. egress ACL processing of multicast frames

Delivery of PDUs addressed to well known addresses

� Additional (possibly large and complex) tables may be needed:

VLAN member sets

ACLs (and associated TCAM)

767676

Coexistence of VEB and IV / VEPA

777777new-pelissier-vntag-seminar-0508

Coexistence of VEB and IV / VEPA

� There seems to be consensus that VEBs are an
important part of the data center environment

� VEPA appears to contain most of the complexity of
a bridge:

Needs to do full VLAN/MAC address forwarding

Needs full ACL processing

Needs full VLAN functionality

Needs to learn/age

� There appears to be little point in developing a
VEPA only device

VEPA seems to be a special operating mode of an
embedded bridge

787878new-pelissier-vntag-seminar-0508

Coexistence of VEB and IV / VEPA

� An Interface Virtualizer is far less complex than a VEB or
VEPA:

Most of the complex functions are allocated to the Controlling
Bridge:

VLAN/MAC address forwarding

ACL processing

VLAN functionality

Learning / aging

� Thus an IV is a very simple device and may stand alone.

� However, it is also desirable to have combined IV/VEB
functionality

797979new-pelissier-vntag-seminar-0508

Coexistence of VEB and IV / VEPA

� One could argue that since VEPA is nearly a bridge
anyway, that starting from a VEB, VEPA is easier to
build

Does this make sense to do?

When does a VEPA make sense to deploy over a bridge?

Since the VEPA is performing most of the bridge
functionality anyway, is there any efficiency to be gained
on operational costs or ease of management, that could
not equally be applied to a VEB?

808080new-pelissier-vntag-seminar-0508

Coexistence of VEB and IV / VEPA

� A combined VEB / Interface Virtualizer is a very
interesting device:

Independent operating modes: allows administrator to
select mode of operation to fit current VM operational
characteristics:

e.g. VEB for high VM to VM traffic

IV for mainly VM to external traffic

Gain operational and administrative efficiency by
eliminating a the internal bridge

818181new-pelissier-vntag-seminar-0508

Coexistence of VEB and IV / VEPA

� Very cool capability: operation as a VEB and IV
simultaneously

� Greatly simplifies “feature creep” demands on VEB

Optimize for trusted VM to VM traffic

Add in any value add desired

Use IV functionality for everything else

� You get all this just by adding a tag!

828282

A Call for Interest

Embedded Bridge / VNTag hybrid operation

838383new-pelissier-vntag-seminar-0508

Call for interest

� It seems clear (at least to me ☺☺☺☺) that we need:

Embedded bridging (both hardware and software based)

Port Extension

� However, it would also be interesting to explore a hybrid
mode of operation (i.e. both modes operating
simultaneously):

Fast path bridging for applications with high VM to VM traffic

IV functionality for traffic requiring the advanced bridging
capability of the Controlling Bridge

A simple protocol to coordinate this between the controlling
bridge and the hybrid device

� If you would be interested in exploring such a capability,
please contact me (jopeliss@cisco.com).

Hopefully there will be sufficient interest and we can get an
informal study group together

848484

Summary

858585new-pelissier-vntag-seminar-0508

Summary

� The VNTag approach provides a clean, straight forward, and
complete approach to address the problems associated with
bridge proliferation in modern data center environments

Provides a simple, low-cost alternative that can dramatically
reduce the number of bridges

Interoperates with independent bridges, including VEBs, to
support the applications where they are needed

Continues to provide (and in many cases enhance) data center
critical capabilities

Non-hypervisor assigned addresses, VLAN enforcement, ACLs,
rapid VM migration

Addresses data center “pain points” beyond just the bridge
embedded in a virtualized server in a logical and consistent
manner

868686new-pelissier-vntag-seminar-0508

Questions?

878787new-pelissier-vntag-seminar-0508

Thank You!

