802.1Qbg
Bridge management
Clause 12

V2
September 28, 2010
IEEE 802.1Qbg Management

• Need to complete 802.1Qbg clause 12, 17 and K.10
 • Clause 12 information model objects
 • Clause 17 Bridge SNMP MIB
 • Clause K.10 IEEE 802.1AB SNMP MIB 802.1 TLV extensions
• Clause 12 object extensions required
 • A root object for each EVB station/bridge
 • Objects for each CDCP state machine (could be multiple physical LANs)
 • Objects for the S-Channel database
 • Objects for the ECP state machines
 • Objects for the VDP state machines
 • Objects for the VSI database
Relationships among EVB objects
(Bridge Port Number Model, from PB)

- How can this model work for the Station?
Relationships among EVB objects (ComponentID Model, from PBB)

- Per Bridge/Station contains component lists (by external port or componentID)
- If no port-mapping S-VLAN component then default S-channel in list
- VEB/VEPA are C-comp component types
Component table vs. external port table
Station/Bridge system managed object

- External port lists are used to manage multi-component provider bridges. The current 802.1Qbc uses external port number to locate components.
- PB system model may references components by external port
 - each C-comp has a single CEP
 - only a single S-comp exists and therefore is attached to any PNP or CNP
 - each port-mapping component has a single RSAP
- PBB BEB system model references components by componentID
 - CNPs and PIPs do not uniquely identify an l-comp (each BEB may have many l-comps with multiple external ports per l-comp)
- EVB components – Station requires componentID
 - Station can have multiple C-comps and multiple port-mapping S-comp when using multiple uplinks
- EVB Bridge – Could use the port model provider we have a single C-Comp in the EVBCB
 - Bridge has multiple port-mapping S-comps however only a single C-comp
 - Bridge could be managed using either the port based or componentID model
EVB Bridge managed object

- Here each port of the Bridge is referenced by a bridge port number.
- Internally, we use doubles of \(<\text{BP#}, \text{SVID}>\) to identify internal CAPs, internal LANs, and internal BPs of C-Comp.
- All external C-Comp BPs have a bridge port number, however internal BPs have not BP#.
- Currently we don’t have a way to extend this to the Station case since the station may have multiple C-comps and S-comps with generalized cross connects.
EVB Station managed object

• All components have a componentID (complID)
• All component ports have a bpID
• Therefore all internal and external ports can be referenced by the double <complID,bpID>
• If we need linear external port numbers then a mapping table from BP# to <complID,pbID> can be added to the system.
• This strategy could be used for both Bridge and Station.
802.1Qbg CDCP Machine objects

• AdminRole: The role may take the value ‘S’ or ‘B’.
• AdminVersion: May take the value 0x00 = disable S-channels or 0x10 = enable S-channels
• AdminChnCap: May take a value from 0 to xxx
• schState: May take the state RUNNING or NOTRUNNING
• S-Channel table: <SCID, VID, cap-port#, c-comp#, c-port#> pairs
 AdminSVIDWants is derived from this table. The table size is AdminChnCap.
 Entries with SCID = 0 are not requested. Entries with VID non-zero are active
 channels.
• Subclause 12.1.1 add after g)
 • The ability to create and delete the functional elements of CDCP and to control their operation.
• Subclause 12.2 add after j)
 • Additional objects to support CDCP protocols (12.23 and 42)
 • Additional objects to support EVB functions and the ECP and VDP protocols (12.24 and 41)
802.1Qbg VDP Machine objects

- Subclause 12.23? Need a number assigned
- VDP objects: One set per station
 - Station Objects (one set) New annex for station MIB? Let DMTF do station MIB? Bridge MIB in vSwitch?
 - Command response timeout
 - Keep Alive interval
 - Keep Alive response timeout
 - Bridge Objects (one set per station)
 - Resource timeout
 - Keep Alive command timeout
- ECP objects: One set per ECP instance (per S-channel)
 - ackTimer
 - TxFrame Count – Successful – Read Only – 64 bits
 - TxRetry Count – Total – Read Only – 64 bits
 - TxFailures – Total – Read Only – 64 bits
 - RxFrame Count – Successful – Read Only – 64 bits
- CDCP objects: once set per CDCP instance
 - CID table
 - S-channel state
 - S-channel VID
 - Reserve Pool of VIDs
VSI managed object

- Table of all VSIs keyed by VSI-ID (one table for station and for Bridge)
 - VSI-ID (may have multiple instance of VSI-ID active in the DC for motion)
 - Current VDP state
 - S-Channel / Port association
 - Operating Command
BACKUP SLIDES