Link Capabilities and a Binding Control Protocol

EVB phone meeting Tuesday 2/2/10

Bob Sultan (<u>bsultan@huawei.com</u>)

Three EVB protocol requirements

Server Control or Bridge Control

Link Capabilities

The link or channel partners exchange capabilities (includes multichannel for physical link)

Channel management

Optional. Used only when multichannel is supported. "Get me a channel", "Release channel with SVID N", etc.

VSI management

Performed on link (when no multichannel) or channel (when multichannel).
Corresponds to "Get me a VSI-to-Profile Binding"

- Assumption: when a physical Link is configured multichannel, then each channel behaves like a link, except that the channel cannot be configured as multichannel (ie., multichannel capability is not recursive);
- Link Capabilities can use existing LLDP with a new TLV;
- Channel management provides a channel with identifying SVID and releases a channel identified by SVID;
 - Once provided, a channel behaves like a link and its capabilities are advertised by LLDP, like any other link;
- VSI Management establishes and releases VSI-to-Profile bindings;
 - VSI identified consistent with RFC 4122.
 - Profile is identified by Profile ID, version, database ID, etc.
 - Or (better) by an identifier that uniquely identifies this set of profile information on the bridge;
 - The relationship between the identifier and the profile information is established by a protocol not shown in this slideset;
 - Allows parameters such as a Traffic Stream Identification String (to allow traffic associated with the VSI to be identified by the bridge port);

A

Compare B

evb-hudson-tlvoverview-0110-v09

LLDP Link Capabilities Advertise link or channel capabilities.

BCP Channel management Establish/release channel

BCP VSI management Establish/release VSI-Profile-Binding LLDP Multichannel TLV Advertise link capabilities.

Establish/release set of channels

LLDP EVB TLV

Advertise channel capabilities

TDB VSI-Discovery
Establish/release VSI-ProfileBinding

- A uses same LLDP TLV for link or channel capabilities;
 B uses two different TLVs for link capabilities (one for the physical link and one for the channel);
- B combines link capabilities with channel establish/release in Multichannel TLV;
- Method of channel establish/release in B has difficulties
 - You have twenty channels established; how do you release channel 117?
- What you want is the capability of establishing/releasing individual channels in the same way that you establish/release VSI-to-Profile bindings;

Complexity in releasing channel

Proposed Multichannel TLV

(alternative format)

- Multichannel Capabilities Describes EVB multichannel capabilities that can be supported by the sender.
 - Number Channels Supported Identifies the number of SVID channels that are supported by the sender.
- Multichannel Current Configuration Identifies the EVB multichannel capabilities that are currently enabled by the sender. Only one channel mode may be selected.
 - Number Channels Configured Identifies the number of SVID channels that are configured/desired by the sender.

- Channel #/SVID Pairs
 - Channel # indicates the index number of the channel. Allows insertion or deletion of specific channels while only listing the currently configured channels.
 - SVID The S-Tag VLAN ID assigned to the channel.
 This is identified by the bridge. SVID of 0 means that no VLAN ID has been assigned.

Transport: LLDP

Link Capabilities LLDP TLV

evb-hudson-tlyoverview-0110-v09

Multi- channel	Reflective Relay (RR)	VSI-to-profile bind protocol	Hypervisor authentication
T/F	Ť/È ´	T/F	T/F

- Could contain additional link attributes;
- Multichannel must be F when advertised on channel;
- Values advertised by server are 'requested' values;
- Values advertised by bridge are 'capabilities';
- Could have separate 'flag' fields for 'requested values' and 'capabilities' as in evb-hudson-tlvoverview-0110-v09 bit this is not shown in this figure.

Binding Control Protocol

- BCP provides common protocol processing to support both Channel Management and VSI Management;
 - Establish/release, request/response, positive/negative response, unsolicited release, periodic renewal, etc.
 are common to both;

BCP Channel Management TLV

Est/Rel Req/Rsp Pos/Neg Sol/Unsol 0/1 0/1

Transport Ethertype 88-CD	TLV Type 127	TLV Leng 4	802.1 OUI 00-80-C2	sub type 10	BCP flags	SVID	Fail Code
2 octets	7 bits	9 bits	3 octets	1 octet		2 octets	1 octet
 — MAC Hea	ader +		- TLV Header -		-	← TLV Info -	

type	direction	BCP flags	
Establish request	S→B	xxxx0000	
Establish positive response	S→B	xxxx0100	
Establish negative response	S→B	xxxx0110	
Release request	B→S	xxxx1000	
Release positive response	B→S	xxxx1100	
Release negative response	B→S	xxxx1110	
Unsolicited release	B→S	xxxx1001	

NOTE: 'hatched' protocol flags are reserved when used with channel management; these represent 'pre-fetch' and 'reserve' when used with VSI Management TLV

- SVID significant in all messages except establish request;
- Fail code significant only in negative responses and unsolicited release;
 - The channel management request TLV for a given channel is sent periodically by the server as a method of allowing unused channels to be reclaimed by the bridge;
 - Receiving the channel management request TLV corresponding to an existing channel has no impact on the channel (idempotency);

When Multichannel *not* supported on Link

Server X

LLDP Link Capabilities; server is not configured to use multichannel or bridge does not support multichannel, or both; Bridge adopts values of RR/NRR, VSI-to-Profile binding, and Hypervisor Authentication specified by server but flags configuration error if different from locally configured values.

Sequence of VSI Management requests/responses associated with the link (including pre-fetch and reserve, and periodic 'renewals')

LLDP Link capabilities repeated periodically.

VSI Management messages

LLDP Link capabilities repeated periodically.

VSI Management messages

Multichannel example

LLDP Link Capabilities; case in which server is configured to use multichannel *and* bridge supports multichannel;

Channel management request for channel establishment; Reply for established channel with SVID;

LLDP Link Capabilities advertised over channel.

Sequence of VSI Management requests/responses associated with the channel (including pre-fetch and reserve, and periodic 'renewals')

LLDP Link capabilities over physical link repeated periodically.

Channel establish repeated periodically to refresh.

LLDP Link Capabilities over channel repeated periodically.

Transport Protocol

- The question of whether or not to deploy a transport protocol is completely independent of whether you deploy
 - the Binding Control Protocol or
 - distinct EVB and VSI discovery protocols.

Transport Protocol

- For those not at the Austin meeting, I argued that the benefit of a transport protocol has *not* been demonstrated;
- It has been argued that a transport protocol is useful because it can provide bandwidth efficiency and prevent buffer overrun when multiple bind/unbind requests are processed within a short time window;
- It seems, however, that this is *exactly* the behavior that a hypervisor (or other controller) would want to avoid;
- In what case does it benefit the hypervisor to start multiple VMs on a single physical server when it could distribute these requests to multiple physical servers?
- Sending multiple requests to a single physical server serializes the start-up of the VMs and creates significant latency;
 - This would *certainly* be the case in recovery scenarios which have been cited as the key motivation for the transport protocol;
- Simple fixed-window flow control can be deployed in BCP to avoid buffer overrun in those cases where requests are received within a short time interval;
- Thus, it continues to be unclear to my why people are anxious to introduce a new transport protocol;
- The consensus view is that a transport protocol should be deployed; while I
 disagree with this consensus view I will not argue the point further (as I said in
 Austin);
- It should be understood that the question of whether or not to deploy a transport protocol is completely orthogonal to the question of whether (a) BCP or (b) the combination of EVB discovery and VSI discovery is deployed;

Key points

- LLDP Link Capabilities TLV used on link and on channel (which behaves like link);
- Channel management and VSI management share many common features
 - Bind establish/release, request/response, positive/negative response, unsolicited release;
 - Leverage common features using 'Bind Control Protocol' (BCP)
- The issue of using, or not using, a 'transport'
 protocol is independent of whether evb Channel
 Management and VSI Management are deployed
 (a) using distinct protocols (EVB Discovery and
 VSI Discovery) or (b) using a common Bind
 Control Protocol;