Link Capabilities and a Binding Control Protocol

EVB phone meeting Tuesday 2/2/10

Bob Sultan (bsultan@huawei.com)
Three EVB protocol requirements

<table>
<thead>
<tr>
<th>Server Control or Bridge Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link Capabilities
The link or channel partners exchange capabilities (includes multichannel for physical link)</td>
</tr>
<tr>
<td>Channel management
Optional. Used only when multichannel is supported. "Get me a channel", "Release channel with SVID N", etc.</td>
</tr>
<tr>
<td>VSI management
Performed on link (when no multichannel) or channel (when multichannel). Corresponds to "Get me a VSI-to-Profile Binding"</td>
</tr>
</tbody>
</table>

- Assumption: when a physical Link is configured *multichannel*, then each channel behaves like a link, except that the channel cannot be configured as multichannel (i.e., multichannel capability is not recursive);
- *Link Capabilities* can use *existing* LLDP with a new TLV;
- *Channel management* provides a channel with identifying SVID and releases a channel identified by SVID;
 - Once provided, a channel behaves like a link and its capabilities are advertised by LLDP, like any other link;
- VSI Management establishes and releases VSI-to-Profile bindings;
 - VSI identified consistent with RFC 4122.
 - Profile is identified by Profile ID, version, database ID, etc.
 - Or (better) by an identifier that uniquely identifies this set of profile information on the bridge;
 - The relationship between the identifier and the profile information is established by a protocol not shown in this slideset;
 - Allows parameters such as a Traffic Stream Identification String (to allow traffic associated with the VSI to be identified by the bridge port);
Compare

A

- LLDP Link Capabilities
 Advertise link or channel capabilities.

- BCP Channel management
 Establish/release channel

- BCP VSI management
 Establish/release VSI-Profile-Binding

B

- LLDP Multichannel TLV
 Advertise link capabilities.
 Establish/release set of channels

- LLDP EVB TLV
 Advertise channel capabilities

- TDB VSI-Discovery
 Establish/release VSI-Profile-Binding

- A uses same LLDP TLV for link or channel capabilities; B uses two different TLVs for link capabilities (one for the physical link and one for the channel);
- B combines link capabilities with channel establish/release in Multichannel TLV;
- Method of channel establish/release in B has difficulties
 – You have twenty channels established; how do you release channel 117?
- What you want is the capability of establishing/releasing individual channels in the same way that you establish/release VSI-to-Profile bindings;
Complexity in releasing channel

Proposed Multichannel TLV (alternative format)

- **TLV type**: 127 (7 bits)
- **TLV information string length**: 9 bits
- **OUI**: 3 octets
- **Subtype**: 1 octet
- **Multichannel Capabilities**: 3 octets
- **Multichannel Current Config**: 3 octets
- **Channel #/SVID pairs**: \((N \times 3\) octets)

Note: WILLING bit could be added to make exchange more consistent with DCBX.

- **Multichannel Capabilities**: Describes EVB multichannel capabilities that can be supported by the sender.
- **Number Channels Supported**: Identifies the number of SVID channels that are supported by the sender.
- **Multichannel Current Configuration**: Identifies the EVB multichannel capabilities that are currently enabled by the sender. Only one channel mode may be selected.
- **Number Channels Configured**: Identifies the number of SVID channels that are configured/desired by the sender.

- **Channel #/SVID Pairs**
 - **Channel #**: Indicates the index number of the channel. Allows insertion or deletion of specific channels while only listing the currently configured channels.
 - **SVID**: The S-Tag VLAN ID assigned to the channel. This is identified by the bridge. SVID of 0 means that no VLAN ID has been assigned.
Link Capabilities LLDP TLV

- Could contain additional link attributes;
- Multichannel must be F when advertised on channel;
- Values advertised by server are ‘requested’ values;
- Values advertised by bridge are ‘capabilities’;
- Could have separate ‘flag’ fields for ‘requested values’ and ‘capabilities’ as in evb-hudson-tlvoveryview-0110-v09 bit this is not shown in this figure.
• BCP provides common protocol processing to support both Channel Management and VSI Management;
 – Establish/release, request/response, positive/negative response, unsolicited release, periodic renewal, etc. are common to both;
BCP Channel Management TLV

<table>
<thead>
<tr>
<th>Transport Ethertype</th>
<th>TLV Type</th>
<th>TLV Leng</th>
<th>OUI</th>
<th>sub type</th>
<th>BCP flags</th>
<th>SVID</th>
<th>Fail Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>88-CD</td>
<td>127</td>
<td>4</td>
<td>00-80-C2</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAC Header</th>
<th>TLV Header</th>
<th>TLV Info</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>type</th>
<th>direction</th>
<th>BCP flags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Establish request</td>
<td>S → B</td>
<td>xxxx0000</td>
</tr>
<tr>
<td>Establish positive response</td>
<td>S → B</td>
<td>xxxx0100</td>
</tr>
<tr>
<td>Establish negative response</td>
<td>S → B</td>
<td>xxxx0110</td>
</tr>
<tr>
<td>Release request</td>
<td>B → S</td>
<td>xxxx1000</td>
</tr>
<tr>
<td>Release positive response</td>
<td>B → S</td>
<td>xxxx1100</td>
</tr>
<tr>
<td>Release negative response</td>
<td>B → S</td>
<td>xxxx1110</td>
</tr>
<tr>
<td>Unsolicited release</td>
<td>B → S</td>
<td>xxxx1001</td>
</tr>
</tbody>
</table>

- SVID significant in all messages except establish request;
- Fail code significant only in negative responses and unsolicited release;
- The channel management request TLV for a given channel is sent periodically by the server as a method of allowing unused channels to be reclaimed by the bridge;
- Receiving the channel management request TLV corresponding to an existing channel has no impact on the channel (idempotency);
- SVID significant in all messages except establish request;
- Fail code significant only in negative responses and unsolicited release;
- The channel management request TLV for a given channel is sent periodically by the server as a method of allowing unused channels to be reclaimed by the bridge;
- Receiving the channel management request TLV corresponding to an existing channel has no impact on the channel (idempotency);
When Multichannel *not* supported on Link

LLDP Link Capabilities; server is not configured to use multichannel or bridge does not support multichannel, or both; Bridge adopts values of RR/NRR, VSI-to-Profile binding, and Hypervisor Authentication specified by server but flags configuration error if different from locally configured values.

Sequence of VSI Management requests/responses associated with the link (including pre-fetch and reserve, and periodic ‘renewals’)

LLDP Link capabilities repeated periodically.

VSI Management messages

VSI-to-Profile Binding
Multichannel example

LLDP Link Capabilities; case in which server is configured to use multichannel *and* bridge supports multichannel;

Channel management request for channel establishment; Reply for established channel with SVID;

LLDP Link Capabilities advertised over channel.

Sequence of VSI Management requests/responses associated with the channel (including pre-fetch and reserve, and periodic ‘renewals’)

LLDP Link capabilities over physical link repeated periodically.

Channel establish repeated periodically to refresh.

LLDP Link Capabilities over channel repeated periodically.

LLDP Link Capabilities (over channel X)

Get me a channel

You’ve got a channel with SVID X

Get me a VSI-to-Profile binding

You’ve got the binding
The question of whether or not to deploy a transport protocol is completely independent of whether you deploy
– the Binding Control Protocol or
– distinct EVB and VSI discovery protocols.
Transport Protocol

- For those not at the Austin meeting, I argued that the benefit of a transport protocol has not been demonstrated;
- It has been argued that a transport protocol is useful because it can provide bandwidth efficiency and prevent buffer overrun when multiple bind/unbind requests are processed within a short time window;
- It seems, however, that this is exactly the behavior that a hypervisor (or other controller) would want to avoid;
- In what case does it benefit the hypervisor to start multiple VMs on a single physical server when it could distribute these requests to multiple physical servers?
- Sending multiple requests to a single physical server serializes the start-up of the VMs and creates significant latency;
 - This would certainly be the case in recovery scenarios which have been cited as the key motivation for the transport protocol;
- Simple fixed-window flow control can be deployed in BCP to avoid buffer overrun in those cases where requests are received within a short time interval;
- Thus, it continues to be unclear to my why people are anxious to introduce a new transport protocol;
- The consensus view is that a transport protocol should be deployed; while I disagree with this consensus view I will not argue the point further (as I said in Austin);
- It should be understood that the question of whether or not to deploy a transport protocol is completely orthogonal to the question of whether (a) BCP or (b) the combination of EVB discovery and VSI discovery is deployed;
Key points

• LLDP Link Capabilities TLV used on link and on channel (which behaves like link);

• *Channel management* and *VSI management* share many common features
 – Bind establish/release, request/response, positive/negative response, unsolicited release;
 – Leverage common features using ‘Bind Control Protocol’ (BCP)

• The issue of using, or not using, a ‘transport’ protocol is independent of whether evb Channel Management and VSI Management are deployed (a) using distinct protocols (EVB Discovery and VSI Discovery) or (b) using a common Bind Control Protocol;