Port Extension support for Generic Bridge Types

Joe Pelissier
bh-pelissier-genericbridges-0910
Goals

- Enable Port Extension to accommodate generic bridge types (i.e. in addition to C-VLAN components)
- Simplify overall architecture
 - Align M-component more closely to S-component
 - E.g. see dcb-congdon-QbgQbhAlign-0710-v1.pdf
Current Proposed Architecture

- Relay function performs filtering (8.8)
- M-channel Registration Entries (8.8.9) produce a connection_identifier (49.3.2)
- Additional filtering (49.3.2) to the Filter Group Primary Port
- EISS (6.9.2) adds an M-TAG
- Connects to a SVMC that adds S-TAGs for unicast but not for multicast.
A Cleaner Approach

- Consolidate as much new functionality as possible into the M-component

 It was proposed in dcb-congdon-QbgQbhAlign-0710-v1 that the M-component should perform all of the additional filtering and insertion of M-Tags instead of the C-VLAN component

 Removing this functionality from the C-VLAN component also reduces the impact of supporting Port Extension with other bridge components (although not technically necessary)

 Difficulty is defining how the M-Comp is to detect and filter multiple copies of a multicast frame.
A Cleaner Approach (2)

- Observations

In the current architecture, the S-VLAN Mapping Component is attached to the C-VLAN component with an internal “LAN”

Such internal “LANs” can pass parameters in unspecified ways

If the C-VLAN component maintains the M-channel Registration Entries, it can create the connection identifier

If the connection_identifier is passed on the internal “LAN” to an M-component instead of a SVMC, the M-component can perform:

- The M-TAG insertion function described in 6.9.2
- The additional filtering required in 49.3.2
- In addition, the entire concept of the Filter Group Primary Port is eliminated
A Cleaner Approach (3)

Qbh - Controlling Bridge

C-VLAN Comp. M-Comp.

Filtering (8.8) Filter from all but one ingress Port based on conn_id and member sets
Conn_id Add M-TAG (or S-TAG)
PE 1+M Add M-TAG (6.9.2)

Existing

Proposed

PE 1 M
1 2 3

PE 2 M
1 2 3

Add M-TAG
Conn_id & Filter to primary port (49.3.2)

Existing

Proposed

Add M-TAG
Conn_id & Filter to primary port (49.3.2)

S

1 2 3
Supporting Generic Bridge Types

- The C-VLAN component in the current figures in the specification is replaced with a generic bridge component (representing a C-VLAN, S-VLAN, and any other relevant components).

- Any generic component wishing the use PE would need to support the one additional filtering entry (i.e. the M-channel Registration Entries) to generate the connection_identifier.

- An M-component is instantiated connected to the generic bridge component by multiple internal “LANs”.

Supporting Generic Bridge Types (2)

- What about the S-TAG?

 If the M-Component is attached to an S-Component, then we have multiple devices generating an S-TAG.

- Option 1:

 Create a new tag (e.g. a unicast or U-TAG). This would be identical to the S-TAG except that it has a different Ethertype

- Option 2:

 Use our existing new tag, the M-TAG.

 Thus, the M-component generates a single tag.

 Any other S-TAGs (e.g. for provider bridging or multichannel) are passed transparently through the M-component
Supporting Generic Bridge Types (3)

- Using an M-TAG only, the dual relay and special routing in the EISS is eliminated
- The M-comp becomes identical to a reduced function S-comp except:
 - It processes / emits an M-TAG instead of an S-TAG
 - The PE CSP is supported
 - Source port filtering is supported
- Some terms change:
 - Service VLAN becomes M-channel
 - SVID becomes MCID
 - The MCID space is bigger than the SVID space
- All tagging, untagging, and forwarding is accomplished through configuration of the member and untagged sets
- Reduced function:
 - The static and dynamic MAC tables are not required
 - STP not required

The yellow portions are eliminated by using a single tag.
Supporting Generic Bridge Types (4)

- M-component always emits an M-Tag
- If `connection_identifier` present, the M-Tag is multicast (MCID obtained from `connection_identifier`)
- Otherwise, the M-Tag is unicast (MCID is the ingress port default MCID)

Incoming frames (eastbound in this figure) are never multicast, therefore the `connection_identifier` is never present.
Supporting Multichannel

- A bridge that supports multichannel is just a generic bridge type from the point of view of the M-component.
- S-channels are point-to-point, so replication of a frame from a SVMC is never required.
 Therefore, SVMC does not provide connection_identifier on internal “LAN”
 S-channels and S-TAGs pass through M-component transparently.
Summary

- Provides PE support to generic bridge types including those that support Multichannel
- Reduces new behavior in existing components
- Reduces new behavior in the M-component
- Maintains one component – one tag behavior
- Provides better modularity between the functionality of Qbg and Qbh

 e.g. Port Extenders do not require knowledge of multichannel operation

- Overall cleaner and easier to understand specification
Thank You!