IEEE 802.1Qbp:
Hash Proposal

Brad Matthews & Puneet Agarwal
June 23, 2011
V 0.2
Agenda

• Overview

• Hash Functions Evaluated

• Review Results

• Observations

• New Functions Evaluated -1
Goals

• Identify hashing strategies that provide good flow distribution for multi-hop networks in a deterministic manner
Evaluating Load Balancing Performance

Approach

- Transmit flows from Edge source device (root node) and measure flow distribution across spine devices.
- Use an N-ary tree with a degree of 4 and a depth of 3 hops.

Measure

- Standard deviation of flows received at the spine devices.
Path Selection Data Flow

Per Hop Node Seed(s)

Extract Packet Fields

Hash Function

Hash Value modulo (# of paths)

Entropy, BMAC-SA, BMAC-DA

BROADCOM

Connecting everything
Hash Input Fields

- Entropy (16-bit)
- Per-hop Node Seed
- BCMAC SA
- BCMAC DA
Agenda

• Overview

• Hash Functions Evaluated

• Review Results

• Observations

• New Functions Evaluated -1
• Baseline Hash Function
 XOR of the following attributes:
 • 16-bit Entropy Value
 • 16-bit Node Seed (unique per hop)
Hash Functions Evaluated – 2

• Baseline + BMAC SA + BMAC DA Hash Function
 – XOR of the following attributes:
 • 16-bit Entropy Value
 • BMAC SA
 • BMAC DA
 • 16-bit Node Seed (unique per hop)
Hash Functions Evaluated – 3

• **CRC16-CCITT**

 – CRC based on the following packet attributes:

 • 16-bit Entropy Value
 • BMAC SA
 • BMAC DA
 • 16-bit Node Seed (unique per hop)

 – CRC Polynomial: \(x^{16} + x^{12} + x^5 + 1 \)
Hash Functions Evaluated – 4

- **Baseline + Node Seed Shift**
 - XOR of the following attributes:
 - 16-bit Entropy value shifted (circular) by the amount in Node Seed[3:0]
 - BMAC SA shifted (circular) by the amount in Node Seed[7:4]
 - BMAC DA shifted (circular) by the amount in Node Seed[11:8]
 - Node Seed[31:16]
 - Node Seed is unique per hop
Agenda

• Overview

• Hash Functions Evaluated
 • Review Results

• Observations

• New Functions Evaluated -1
Test Setup

• **Topology**: N-ary Tree
 – Degree: 4
 – Depth: 3 hops
 – Spine devices: 64

• **Simulation Constraints**
 – 19,200 flows originating at edge source device
 • (300 flows) x (# of spine devices)
 – BMAC SA/DA limited to 64 unique values
Simulation Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Average Standard Deviation (20 Iterations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1,162</td>
</tr>
<tr>
<td>Baseline + BMAC SA + BMAC DA</td>
<td>1,162</td>
</tr>
<tr>
<td>CRC16-CCITT</td>
<td>1,162</td>
</tr>
<tr>
<td>Baseline with Node Seed Shift</td>
<td>124</td>
</tr>
</tbody>
</table>
Agenda

• Overview

• Hash Functions Evaluated

• Review Results

 • Observations

• New Functions Evaluated -1
Observations and Next Steps

• Observations
 – XOR with circular shift based on a per-node seed provided good performance with low implementation cost

• Next Steps
 – Look at other functions
 • FNV
 • Ideal
Agenda

• Overview

• Hash Functions Evaluated

• Review Results

• Observations

• New Functions Evaluated -1
New Hash Functions Evaluated

- **Case A - Ideal**
 - Random value generated for every flow at every node
 - *Next Hop Selection*: Random Value mod (# of Next Hops)
Hash Functions Evaluated

- **Case B - FNV**
 - FNV-16
 - FNV32 with 32-bit output folded using XOR of:
 - Hash Value[15:0]
 - Hash Value[31:16]
 - **Offset-basis**: 0x811c9dc5
 - **Octets of Data**:
 - Entropy (2 octets)
 - Node Seed (2 octets)
 - BMAC SA (2 octets)
 - BMAC DA (2 octets)
Simulation Results

<table>
<thead>
<tr>
<th>Case</th>
<th>Average Standard Deviation (20 iterations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case A: Ideal</td>
<td>17.33</td>
</tr>
<tr>
<td>Case B: FNV</td>
<td>29.72</td>
</tr>
</tbody>
</table>
New function Observations and Next Steps

• Observations
 - FNV shows very good behavior and is approaching very close to ideal

• Next Steps
Thank You