802.1Qbp – in one slide (minus OA&M)

ISIS-Hello	ECT-ALGORITHM= 00-80-C2-11 (after .1aq's) B-VID = VID 0	If VID = 0 then no B-TAG else normal B-TAG. Only one ECT-ALGORITHM required and only one B-VID (or 0) required. Multiple B-VIDs may be used but only one ECT-ALGORITHM for Qbp now.
ISIS-LSP	ISID-ADDR-TLV B-VID (as above) <i>Tx;Rx;Ts</i> ;, <i>SUB-ALG:5</i> ,ISID:24	 ISID in Qbp mode when B-VID matches ECT-ALGORITHM VID (above). Tx=(S,G) Transmitter, Rx=Receiver, Ts =(*,G) Transmitter Tie breaking/root selection based on XOR against MASK[SUB-ALG] (similar to the 802.1aq CIST algorithm but with MASK)
Group DA Format	(*,G) => F(SUB-ALG) -xx-xx-xx (S,G) => SpSource-xx-xx-xx Head => B-DA	Shared TREE – identifies SUB-ALG (for RPFC) where xx-xx-xx is ISID. Source TREE uses SPBM format where xx-xx-xx is ISID. Head replication just uses normal unicast B-DA for each copy.
Compute	Unicast	Run SPF from self. On equal cost alternatives, "OR" ECMP sets of the two alternatives together to form ECMP set for this child (like OSPF/IP).
Compute	Multicast – Shared Tree 16 trees, one per SUB-ALG when at least one Ts bit is set	Find node with lowest Bridgeldentifier XOR MASK[<i>SUB-ALG</i>]. Run SPF with that node as root. When two equal cost choices, pick parent with lowest Bridgeldentifier XOR MASK[<i>SUB-ALG</i>]. Then prune tree per ISID with <i>Ts</i> bit set. FIB DA is F(<i>SUB-ALG</i>)-xx-xx-xx
Compute	Multicast – Source tree 16 per source, one per SUB-ALG when at least one Tx is set.	Same as above except that source is the Bridge with the ISID <i>Tx</i> bit set. Then prune tree per ISID (same as AQ but <u>not symmetric</u>) because tie breaker only backtracks to parents to pick min masked Bridgeldentifier.
Compute	Multicast – Head end replication	Head end builds replication over unicast tunnels to all ISID with Rx set.
Data Path	PBB + F-TAG [B-TAG optional]	F-TAG = <f-tag-type:16, 6,="" <i="" pcp:3,dei:1,resv:="">TTL:6, <i>Flow-ID</i>:16 ></f-tag-type:16,>
Loop Prevention	TTL RPFC – (S,G) RPFC – (*,G)	Decrement. New – must check SA ECMP 'set' against L2 ECMP FIB, if matches any ok. New – must lookup <sa, <b="">SUB-ALG> in new tables</sa,>

Peter Ashwood-Smith (peter.ashwoodsmith@huawei.com)