
802.1Qbp

Shared Tree (*.G) Algorithms

(for head end MCAST ECMP)

Peter Ashwood-Smith

peter.ashwoodsmith@huawei.com

bp-ashwood-shared-trees-1011-v3



Motivation

• 802.1Qbp is introducing new ECMP behavior in 
an 802.1aq network.

• There is a requirement to do ECMP (head end) 
over multicast trees.

• So far we have only discussed the (S,G) 
multicast trees (existing .1aq style and Ben’s 
alternatives).

• I’d like to discuss some simple (*,G) options 
since state reduction without loss of functionality 
is possible especially in DC networks.

N.B (S,G) is source/group specific tree, i.e. <SpSourceID>||<SID> in the DA

(*.G) is shared by all sources but one group i.e. <Constant>||<ISID> in the DA



Considerations

• What we really want is a minimum spanning tree 
that covers just a subset of the nodes (those in 
the ISID).

• This is referred to as a Steiner Tree.

• A Steiner Tree computation is NP-Complete.

• “Non Polynomial” means its >> O(Nc) for any 
constant c.

• “Complete” is a way of saying we won’t likely 
solve it here .. 

• Basically its one of those problems that you 
have to enumerate all O(n!) solutions and pick 
the best. 



Solutions

There are a few less optimal (*,G) solutions:

1. Pick some node as a root and use SPF from ‘it’
as the tree.
– This is O(n*logN) but sends traffic everywhere!!!

– So .. modify above by pruning per ISID (SPF is 
template).

– This is O(N*logN + I*logI)

– Still non shortest path routing but state is minimal

2. Other solutions aimed at reducing non shortest 
path routing issues but increase CPU.. these 
are FFS. (e.g. enforce root = member of ISID)



One possible proposal 
• The 802.1aq CIST algorithm (which is just the STP 
algorithm done as a computation), can be reused for per 
ISID (*,G) trees in .1Qbp

• The multicast address format can be the existing PBB 
format i.e:  00-1e-83-xx-xx-xx (where xx-xx.. Is the ISID)

• 16 different shared trees can be computed by
finding the lowest BridgeIdentifier under the 16 802.1aq
ECT masks i.e. 0x00.., 0xff.., 0x11.., 0x22.. ... 0xee...

• These shared trees produce almost symmetric congruent 
results to the .1aq (S,G) trees in fat tree networks.

• Root selection automatic based on algorithm, auto recovery 
to new root etc. No explicit encoding of root in DA required.

• Can use F-TAG with TTL, or can rely on digest for loop 
prevention, or both.... 

• Can use same B-VID as unicast (no SVL), or different (with 
SVL) or even no B-VID.



Example #1
A (*,G) is computed

using the Lowest Bridge

Identifier (node 1) CIST

algorithm.

The full tree is shown

in pink.

Two ISIDs are pruned

against this tree for

Multicast, sub trees below: 

ISID 17    and  ISID 16.

We show the Mcast

state at node 3 for

Each ISID.

Both-16

Both-16

-CIST

-Pruned for ISID 16

-Pruned for ISID 17

Root

FDB @3



Example #1 – pruning

Both-16

FULL MASK0x00

(ROOT=1) TREE

ISID 16 

PRUNED

ISID 17

PRUNED

Both-16

Root Root Root



Example#2
A (*,G) is computed

using the highest Bridge

Identifier (node 11) i.e. CIST

algorithm XOR 0xff.

The full tree is shown

in pink.

One ISIDs is pruned

against this tree for

Multicast, sub trees below: 

ISID 18

We show the Mcast

state at node 3 for

Each ISID.

-CIST

-Pruned for ISID 16

-Pruned for ISID 17

-Pruned for ISID 18

Both-18

Both-18

Both-18

Root

FDB @3



Example#3- Coverage is not bad

ALL 16 (*,G) Trees shown superimposed. Basically the CIST algorithm

16 times but with different root choices based on BridgeIdentifier XOR Mask[i]



Example#3- Some of the individual trees

ALG MASK=0x8888.

So node .. 108 is root.

ALG MASK=0x444444.

so node 104 is root.

Root

Root



Example#3- Comparison to ECT source tree in Fat Tree

(S,G) Tree

Unicast and Mcast

Routes from Node 7

to all other nodes.

(*,G) TREE

Multicast Shared Tree

Routes from node 7.

Note routes to all other

leaves 8,6,5 is identical

To (S,G) tree above.

Tie

Win

R
o
o
t

R
o
o
t



Basic Algorithm
Compute Shared Tree (alg, self) {      // alg==0 => .1aq CIST

root = find lowest BridgeIdentifier XOR Mask[alg]*

run SPF from root where

tie break on equal cost winner = 

lowestBridgeIdentifier XOR Mask[alg]*

}

Multicast DA per ISID can then easily be generated by sorting the set of all ISIDs

and the interface to reach that that ISID... Next slide.. 

So total run time is O( 16 x [ (NxLog(N)) + (I x Log(I)) ] )

* Recall Mask[] = {0x00.., 0xff., 0x11.., 0x22.., 0x33..., 0xee.. }



Pruning - One Possibility

6 7

5

Self

Root

If/2

If3
If4

I1,I2,I3 I1,I2

I2,I3

1. At self do the SPF from selected root.

Result is upward pointing parent pointers to root.

2. For each node in network assign it the local interface

that reaches it. Eg: 5 and everything above it via if/2;

7 and everything below it by if/4 etc.

3. Then traverse network and generate a list of.

<ISID, IF/#> records ..will have lots of duplicates.

I2,if/2

I3,if/2

I1,if/3

I2,if/3

I3,If/3

I1,if/4

I2,if/4

SORT

I1,if/3

I1,if/4

i2,If/2

i2,if/3

i2,If/4

i3,if/2

i3,if/3

DA=00-1e-83-00-00-02

OutIF = {if/2, if/3, if/4]

4

Traverse and

generate Mcast

Ignore if only reachable via one interface ..

Root



100+ node example – ISID 100

with 4 attachment points

FDB @ 4



Notes : Addressing Options

1. DA = 01-1e-83-xx-xx-xx & VID = F(ALG)

– Tree is identified by the VID so overlapping ISIDs

(as used for ECMP) requires the VID to differentiate. 

– Local bit NOT set so can co-exist with (S,G) .1aq 

trees.

2. DA = F(ALG)-xx-xx-xx & VID = Const | Absent

– Tree is identified by the DA so overlapping ISIDs do 

not require VID to differentiate and in fact VID can 

be absent even with overlapping ISIDs.

Note that encoding root of (*,G) tree in address appears unnecessary as

root is a function of the Algorithm used to pick tree. 

Note 24 bit ISID value represented as xx-xx-xx



Addressing Option 2 Cont’d
802.1aq Group MAC format

SPBM uses only address type 00, therefore we could use address type 01 to

implement:

DA = 1101-F(ALG):20-xxxxxxxxxx.....xxxxxxx

So this gives up to 220 shared trees .... more than we can do with B-VID!



Questions

• Do we need new BridgePriority for (*,G) 

root selection?

– We could allow greater flexibility with separate 

ECT tie breaking BridgePriority and ECMP 

root selection BridgePriority but it adds more 

complexity...

– We have opaque TLV that can be used to 

carry new ‘things’ without involving ISIS-wg.


