
802.1Qbp – ECMP

Multicast Load Spreading

Ben Mack-Crane

(ben.mackcrane@huawei.com)

17-Sep-11 1

Observations on Multicast ECMP

• Multicast cannot use the unicast load spreading mechanism

– Must forward on multiple ports (cannot select just one)

– Random selection & replication can lead to duplication & loops

• ECMP for unicast traffic makes congruence (unicast-multicast

and bi-directional) either easy or impractical (depending on

how the definition is adjusted)

– In either case congruence is not a concern with ECMP

• Multicast traffic must be constrained to a tree

– to avoid loops and duplicate frames

17-Sep-11 2

Spreading Multicast Traffic

• In SPBM each service instance (I-SID) has distinct group

addresses used to carry client multicast/broadcast traffic

– Group addresses composed from SPSourceID & I-SID

– # multicast flows = #service instances * #edge nodes

• Multicast filtering governed by VID and address (not Flow ID)

• Each multicast address can be independently routed

• Could assign each address to a different SPT

– All nodes must agree on assignment to produce consistent

forwarding state

– Potentially large calculation (tree per address)

– Probably more addresses than SPTs anyway

17-Sep-11 3

One Approach – Hashed SPT per Source

• Select “random” tree from SPT set for each source node

– Select from all SPTs, not just those selected by .1aq tie-breakers

• Use this tree for all flows from that node

– All I-SID multicast from source node use same tree

– I-SIDs have varied endpoints, so some spreading within tree

• Use hash (e.g., FNV) to select one “parent” from set of equal

cost parents calculated for unicast ECMP

– Modest addition to route calculation

– Include source node MAC address in hash to create variation

• Tried this out in an SPB simulator…

17-Sep-11 4

Unicast SPB, e.g. between 26 and 32

SPB selects a single path using an ECT tie-breaking function.

Unicast ECMP, e.g. between 26 and 32

ECMP load spreading utilizes all links on equal cost paths for unicast

traffic.

SPB Multicast Tree, e.g. I-SID 255 from 26

Multicast selects links from one equal cost tree using ECT tie-breaker.

ECMP Multicast Tree, e.g. I-SID 255 from 26

Multicast load spreading selects links from all equal cost paths using a

hash function (in this case FNV).

Code for Parent FNV hash

#define C1AQ_SYST_HASH_PARENT(result, syst, r, n) \

{ register tUINT32 hash = 0x811C9DC5; \

 register tUINT64 fodder; \

 register tUINT32 fnvPrime = 0x01000193; \

 register tUINT32 best = 0; \

 register int k,m, np = syst->node[n].np; \

 for (m=0; m<np; m++) \

 { \

 fodder = syst->node[r].sysIdMac[0]; \

 for(k=0;k<7;k++) \

 { \

 hash = hash ^ (fodder & 0x000000ff); \

 hash = hash * fnvPrime; \

 fodder = fodder >> 8; \

 } \

 fodder = syst->node[syst->node[n].parent[m]].sysIdMac[0]; \

 for(k=0;k<7;k++) \

 { \

 hash = hash ^ (fodder & 0x000000ff); \

 hash = hash * fnvPrime; \

 fodder = fodder >> 8; \

 } \

 if (hash > best) \

 { \

 best = hash; \

 result = m; \

 } \

 } \

 result = (m==0 ? -1 : syst->node[n].parent[result]); \

}

18-Sep-11 9

This is the code in the SPB

simulator used to generate these

slides – I’m not sure this is a

correct implementation of FNV –

comments welcome!

• Random parent selection from
ECMP set to produce source tree

• Uses Highest Random Weight
(RFC 2991) to minimize impact of
topology change

All SPB Multicast Trees, e.g. I-SID 255

Set of multicast trees are congruent.

All Multicast Trees, e.g. I-SID 255

Multicast load spreading selects links from all equal cost paths using a

hash function (in this case FNV). Different trees are selected for each

root by including root MAC address in hash.

Observations on this Approach

• ECMP algorithm used for both unicast and multicast

– Provides load spreading for both types of traffic

• Multicast spreading uses a standard hash (pseudo-random)

• Good computational performance (relatively minor change)

• No provisioning required! (just like unicast)

– No selection or configuration of VID or tie-breaker needed

• Propose further study of spreading performance and selection

of a standard hash algorithm for use in multicast route

calculation

17-Sep-11 12

One Concern – Multicast State Scaling

• Feedback expressing concern about scaling of multicast state

– Multicast state is required per group address (I-SID endpoint)

• In networks with many BSIs with many endpoints each…

– Result is many many group addresses registered in FDB

• E.g., virtual desktop VLAN may have 100s of endpoints

(1000’s of users)

– With default .1aq this means 100s of group addresses

– And that is just for one I-SID!

• In large DC networks many group addresses may be

assigned to the same tree (many more addresses than trees)

• Can we provide better scaling behavior?

18-Sep-11 13

Page 14

Loop Free SPT Set

• Data center “fat tree” network architecture has a very regular structure

• A shortest path tree can match an SPT Set (i.e., be SPT from all endpoints)

• Using a shared tree for multicast reduces the forwarding state required
(i.e., can use one address per service instead of one address per service endpoint)

Page 15

ECMP with Shared Trees

• Shortest path trees rooted at spine nodes can form a balanced cover set

• Load spread by random assignment of each service instance to one of the shared trees

• Can realize significant reduction in multicast state (e.g., order of magnitude or more)

Observations on Shared Trees

• .1aq ECT Algorithm knobs may be used to tune trees

– Create a set of trees that use all links

– Each link used by the same number of trees (absent faults)

• VIP Default Backbone Destination address default is a single

value per I-SID (BSIGA)

• Worthwhile to study shared trees and the options for

supporting this feature

18-Sep-11 16

Multicast ECMP in 802.1Qbp

• So far in Qbp we have discussed the following:

– Treat multicast the same as in .1aq (one congruent SPT set)

– Provision multiple .1aq SPT Sets (tie-breakers) in one VLAN

– Automatic selection from all possible SPTs, one per source node

– Support shared trees to address FDB scaling issues

• These are four out of many possibilities

• Need to consider benefits of supporting various options

– Better spreading characteristics

– Less configuration (e.g. fully automatic)

– Better fit with existing standards

– Ability to control traffic placement when needed

18-Sep-11 17

ECMP Multicast Attributes

• Granularity of SPT selection?
– One (per region)

– One per source node

– N per source node

– One per address

• How many SPTs in selection set?
– One .1aq tie-breaker subset

– N .1aq tie-breaker subsets

– All SPTs

• How many group addresses?
– One per I-SID endpoint

– One per I-SID (requires shared tree)

• Selection of SPT
– Automatic (requires standard hash)

– Provisioned (may require ISIS-SPB extension)

• Assignment of I-SID to SPT
– Automatic (requires standard hash)

– Provisioned (may require ISIS-SPB extension)

18-Sep-11 18

Some Possible (Desirable?) Combinations

• All Automatic: maximize number of trees, spreading opportunity

– All SPTs (e.g., hash selection from ECMP)

– One SPT per source node (to keep computation tractable)

– One address per I-SID endpoint (so shared trees are not required)

• All Provisioned: minimize options, maximize control

– One .1aq tie-breaker subset

– One SPT per source node

– One address per I-SID endpoint

• Minimize multicast FDB state

– N .1aq tie-breaker trees (to provide cover set)

– N SPTs per source node

– One address per I-SID (requires shared tree)

– Provisioned (or Automatic?)

18-Sep-11 19

Need to choose combinations to support in 802.1Qbp.

