- 110 -

TD 405 Rev.1 (PLEN/15)

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 15

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012
	TD 405 Rev.1(PLEN/15)

	
	English only

Original: English

	Question(s):
	9/15
	Geneva, 14-25 February 2011

	TEMPORARY DOCUMENT

	Source:
	Editor G.8021/Y.1341

	Title:
	Draft Amendment 1 to Recommendation ITU-T G.8021/Y.1341 (for consent)

Introduction

This document contains the draft Amendment 1 for Recommendation G.8021/Y.1341, following the agreement at the Funchal meeting in December 2010. It is derived from the consolidated document submitted as the latest draft G.8021/Y.1341 [1] and mainly includes the following items:
· Terms and definition
· Acronyms
· CSF related function
· dFOP-TO
· “in-profile” traffic
· Delay measurement
· Synthetic loss measurement
· Ingress VID Filtering
· ETY4/ETHPP-OS Adaptation
· ODUkP/ETH Adapation
· ODU2P/ETHPP-OS Adaptation
· MI_Active and MI_MAC_Length signals
Reference
[1]
Editors G.8021/Y.1341, TD484/3 (Geneva, Feb 2011) “The latest draft of G.8021/Y.1341”
Recommendation ITU-T G.8021/Y.1341

Characteristics of Ethernet transport network equipment functional blocks

Amendment 1
Summary

This amendment 1 contains additional materials to be incorporated into ITU-T Recommendation G.8021/Y.1341 approved on October 2010. It presents enhancements about ETH performance monitoring functions, Client Signal Failure function, and ODU server to ETH adaptation functions.

Amendments

1. Update Figure 1-1

[image: image1.emf]<client>_FP

<client>_CP

ETH_FP

ETCn_TCP

ETCn_AP

ETH_AP

ETH_AP

ETH_TFP

ETH_FP

ETH_TFP

ETH

ODUkP_AP

NOTE －ETH_TFP interface of adaptation functions towards the ETH_FT functions connects to logical link control.

See [ITU-T G.8010] and function definition for details.

ETCn

ETCn/ETHETYn/ETH

ETHx

ETHx/ETH

ETHx

BP_FP

ETHx/BP

ETHx/<client>

Sn/ETH

Sn_AP

ODUkP/ETH

ETH_AP

ETH_TFP

ETHx

ETHx/ETH-m

ETHG_APP

ETHG_TFPP

ETHG

ETHG/ETH

(Note)

ETH-LAG_AP

ETH-LAG

ETYn-Np/

ETH-LAG-Na

ETYn/ETCn

ETYn

ETY_TCP

Sn-X_AP

ETYn_AP

Sn-X/ETC3

Na

Np

ETH-LAG_FP

ETH-LAG/ETH

ETH_AP

ETH_TFP

ETHx

ETHx/ETHG

Pq/ETH

Pq_AP

ETY4/ETHPP-OSODU2P/ETHPP-OS

ETY3/CBRxODU0P/CBRx

ODU2P_AP

ODU0P_AP

ETH

ETH_FP

ETH_TFP

(Note)

ETH_FPETH_FPETH_FP

ETH_FP

ETH_FP

(Note)

(Note)

(Note)(Note)(Note)

Sn-X-L/ETH

Sn-X-L_AP

ETH_FP

(Note)

Sm-X-L/ETH

Sm-X-L_AP

ETH_FP

(Note)

Sm/ETH

Sm_AP

ETH_FP

(Note)

Pq-X-L/ETH

Pq-X-L_AP

ETH_FP

(Note)

ODUkP-X-L/ETH

ODUkP-X-L_AP

ETH_FP

(Note)

MPLS_AP

MPLS/ETH

ETH_FP

(Note)

VC/ETH

VC_AP

ETH_FP

(Note)

RPR_AP

RPR/ETH

ETH_FP

(Note)

ETH_FP

(Note)

S4-64c/ETHw

S4-64c_AP

ETH_FP

(Note)

<server>_AP

<server>/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

ETH_AP

ETH_TFP

ETHDe

ETHD/ETH

n

n

n

n

ETH_AP

ETH_TFPP

ETHDe

ETHD/ETH

n

n

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_AP

ETH_TFP

ETHDi

ETHD/ETH

ETH_FP

ETH_TFP

Figure 1-1 – Overview of G.8021/Y.1341 atomic model functions

2. Add definition
3.1.69
timing point: [ITU-T G.806]
Existing clause 3.1.69 to 78 are to be renummberd renumbered.
3. Add Acronyms to clause 4
CSF

Client Signal Fail
DCI

Defect Clear Indication
FDI

Forward Defect Indication
PI

Replication Information

PP

Replication Point

SL

Synthetic Loss

SLM

Synthetic Loss Message

SLR

Synthetic Loss Reply

TCP

Trail Connection Point

TP

Timing Point

4. Add the following rows to Table 6-1 for CSF and dFOP-TO
	CSF-LOS
	Reception of a CSF frame that indicates Client Loss of Signal.

	CSF-FDI
	Reception of a CSF frame that indicates Client Forward Defect Indication.

	CSF-RDI
	Reception of a CSF frame that indicates Client Reverse Defect Indication.

	expRAPS
	Reception of a valid R-APS frame.

5. Add the following rows to Table 6-2 for CSF and dFOP-TO
	dCSF-LOS
	CSF-LOS
	#CSF-LOS == 0
(K*CSF_Period or CSF-DCI)

	dCSF-FDI
	CSF-FDI
	#CSF-FDI == 0
(K*CSF_Period or CSF-DCI)

	dCSF-RDI
	CSF-RDI
	#CSF-RDI == 0
(K*CSF_Period or CSF-DCI)

	dFOP-TO
	#expAPS==0 (K * long APS interval) or #expRAPS==0 (K * long R-APS frame interval)
	expAPS or expRAPS

Note that for the case of CCM_Period, AIS_Period, LCK_Period, and CSF_Period the values for the CCM, AIS, LCK, and CSF periods are based on the periodicity as indicated in the CCM, AIS, LCK, or CSF frame that triggered the timer to be started.

6. Update Figure 6-2 for CSF
Change or add the text in RED:
[image: image2.emf]<Defect> Deteced

<Event>(Period)

Timer

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)

Old_Period=Period

Set(K*Period, Timer)Set(K*Old_Period, Timer)

<Defect> Deteced

<Event>(Period)

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)

Old_Period=Period

Set(K*Period, Timer)Set(K*Old_Period, Timer)

Timer

!<Defect>

Timer

!<Defect>

<Clear_event>

Reset(Timer)Reset(Timer)

!<Defect>!<Defect>

Figure 6-2 – Defect detection and clearance process for dUNL, dMMG, dUNM, dUNP, dUNPr, dAIS, dLCK, and dCSF
7. Add new clause 6.1.4.3.4 for dFOP-TO
6.1.4.3.4
Linear or Ring protection Failure of Protocol Time Out (dFOP-TO)

The Failure of Protocol Time Out defect is calculated at the ETH layer. It monitors time out defect of:

· Linear protection by detecting the prolonged absence of expected APS frames, or
· Ring protection by detecting the prolonged absence of expected R-APS frames.

Its detection and clearance are defined in Table 6-2.

In the case of linear protection, dFOP-TO is detected on receipt of no expAPS event during K times the long APS interval defined in G.8031/Y.1342 (where K >= 3.5) when neither dLOC nor CI_SSF are reported. dFOP-TO is cleared on receipt of an expAPS event. These events are generated by the subnetwork connection protection process (clause 9.1.2).

In the case of ring protection, dFOP-TO is detected on receipt of no expRAPS event during K times the long R-APS frame intervals defined in G.8032/Y.1344 (where K>=3.5) on a ring port reporting no link level failure and neither administratively disabled, nor blocked from R-APS Message reception. dFOP-TO is cleared on receipt of an expRAPS event. These events are generated by the ring protection control process (clause 9.1.3).
8. Add new clause 6.1.5.4 for CSF
6.1.5.4 Client Signal Fail defect (dCSF)
The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is calculated at the ETH layer. It monitors the presence of a CSF maintenance signal.
Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by the CSF reception process in clause 9.2.1.2) and the Period is the Period carried in the CSF frame that triggered the event, unless an earlier CSF frame carried a greater period.
The <Clear_event> in Figure 6-2 is the CSF event which indicates Detect Clearance Indication (DCI).
9. Update clause 8.1.7.2 for in-profile
Change or add the text in RED:
8.1.7.2
CCM Generation Process

[image: image3.emf]Enabled

Timer

D(OAM), P(MI_CC_Pri),

DE(0)

Disabled

MI_CC_Enable

!MI_CC_Enable

CCM Generation

Set(MI_CC_Period, Timer)

Stop(Timer)

Set(MI_CC_Period, Timer)

D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

P==MI_CC_Pri

Y

N

Counter

TxFCl++

MI_LM_Enable?

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

,

RI_CC_RxFCl,

)

OAM=CCM(

MI_CC_MEG,

MI_CC_MEP,

MI_CC_Period,

RI_CC_RDI,

0,

0,

0

)

N

Y

TxFCl

RI_CC_TxFCf

& DE==<false>

Figure 8-17 – CCM Generation Behaviour

Figure 8-17 shows the state diagram for the CCM Generation process. The CCM Generation Process can be enabled and disabled using the MI_CC_Enable signal, where the default value is FALSE.

In the Enabled state there are two main parts:

· Counter part that is triggered by the receipt of a data frame;

· CCM Generation part that is triggered by the expiration of the timer.

Counter Part

The counter part of the CCM Generation process forwards data frames and counts all ETH_AI frames with Priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>.. The D, P and DE signals are forwarded unchanged as indicated by the dotted lines in Figure 8-16.

10. Update clause 8.1.7.3 for in-profile
Change or add the text in RED:
8.1.7.3
CCM Reception Process

[image: image4.emf]Waiting

D(OAM),

P(P), DE(DE)

MEL(OAM)==

MI_MEL

unexpMEL(

Period(OAM))

MEG(OAM)==

MI_MEG_ID

unexpMEG(

Period(OAM))

MEP(OAM) in

MI_PeerMEP_ID[]

unexpMEP(

Period(OAM))

Period(OAM)==

MI_CCM_Period

unexpPeriod(

Period(OAM))

P==

MI_CC_Pri

unexpPriority(

Periiod(OAM))

RxFCl(RxFCl)

TxFCf(TxFCf(OAM))

TxFCb(TxFCb(OAM))

RxFCb(RxFCb(OAM))

N

N

N

N

N

Y

Y

Y

Y

Y

expCCM[Index(OAM.MEP)]

SvdCCM:=(D,P,DE)

SvdCCM:=(D,P,DE)

SvdCCM:=(D,P,DE)

MI_Get_SvdCCm

MI_SvdCCM(Svd

CCM)

Period(OAM)=000

Y

N

D(D),P(P),DE

(DE)

D(D),P(P),DE

(DE)

Y

N

RxFCl++

CCM ReceptionCounter

RDI[Index(MEP(OAM))](RDI(OAM))

RI_CC_RxFCl(RxFCl)

RI_CC_TxFCf(TxFCf(OAM))

P==MI_CC_Pri

& DE==<false>

Figure 8-19 – CCM Reception behaviour

The CCM reception process consists of two parts: Counter and CCM Reception.

Counter Part

The counter part of the CCM reception process receives ETH_CI, extracts pro-active ETH OAM frames and forwards remainder as ETH_AI traffic units. It counts this number of ETH_AI traffic units that have priority (P) (i.e. ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e. ETH_AI_DE) equal to <false (0)>.

 CCM Reception Part

The CCM reception part of the CCM reception process processes CCM OAM frames. It checks the various fields of the frames and generates the corresponding events (as defined in clause 6). If the Version, MEL, MEG and MEP are valid the values of the frame counters are sent to the performance counter process.

Note that unexpPriority and unexpPeriod events do not prevent the CCM from being processed, since the MEL, MEG and MEP are as expected.

11. Update clause 8.1.9.3 for in-profile
Change or add the text in RED:
8.1.9.3
LMx Generation Process

The LMx Generation Process contains both the LMM Generation and LMR Generation functionality. Figure 8-35 shows the LMx Generation Process.

[image: image5.emf]LMxGeneration

ETH_AI_D/P/DE

DPDE

LMMLMR

LMM(DA,P)LMM(DA,P)

Data

Data

DPDEDP

RI_LMM(D,P,DE)

DE

MI_LM_Pri

LMxGeneration

ETH_AI_D/P/DE

DPDE

LMMLMR

LMM(DA,P)LMM(DA,P)

Data

Data

DPDEDP

RI_LMM(D,P,DE)

DE

MI_LM_Pri

Figure 8-35 – LMx Generation Process

Figure 8-36 defines the behaviour of the LMx Process. The behaviour consists of three parts:

· LMM Generation part that is triggered by the receipt of the LMM(DA,P) signal;

· LMR Generation part that is triggered by the receipt of RI_LMM(D,P,DE) signals;

· Counter part that is triggered by the receipt of a normal data signal.

[image: image6.emf]LMM(DA,P)

Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

LMM.D(OAM),

LMM.P(P),

LMM.DE(0)

P==MI_LM_Pri

Y

N

RI_LMM(OAM,P,DE)

LMR.D(OAM),

LMR.P(P),

LMR.DE(DE)

OAM=LMM(

DA,

Tx

)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=LMR

TxFCb=Tx

Tx++

LMM GenerationLMR Generation

Counter

Waiting

& DE==<false>

Figure 8-36 – LMx Generation Behaviour

Counter Part

This part receives ETH_AI and forwards it. It counts the number of ETH_AI traffic units received with ETH_AI_P signal equal to MI_LM_Pri and ETH_AI_DE to <false (0)>.

12. Update clause 8.1.9.3 for in-profile
Change or add the text in RED:
8.1.9.4
LMx Reception Process

The LMx Reception Process contains both the LMM Reception and LMR Reception functionality. Figure 8-39 shows the LMx Reception Process.

[image: image7.emf]LMxReception

DPDE

RI_LMM(D,P,DE)

RxFCl

TxFCf

RxFCf

TxFCb

L

M

M

L

M

R

Data

LMM

LMR

MI_LM_Pri

Data

PDEPDE

DPDE

DD

LMxReception

DPDE

RI_LMM(D,P,DE)

RxFCl

TxFCf

RxFCf

TxFCb

L

M

M

L

M

R

Data

LMM

LMR

MI_LM_Pri

Data

PDEPDE

DPDE

DD

Figure 8-39 – LMx Reception Process

Figure 8-40 defines the behaviour of the LMx Reception Process. The behaviour consists of three parts:

· LMM Reception part that is triggered by the receipt of an LMM Traffic Unit;

· LMR Reception part that is triggered by the receipt of an LMR Traffic Unit;

· Counter part that is triggered by the receipt of a normal data signal.

[image: image8.emf]LMR_D(OAM),

LMR_P(P),

LMR_DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

Data.D(D),

Data.P(P),

Data.DE(DE)

P==MI_LM_Pri

Y

N

LMM_D(OAM),

LMM_P(P),

LMM_DE(DE)

RI_LMM(OAM,P,DE)

RxFCl++

LMR ReceptionLMM ReceptionCounter

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCf(OAM)=Rx

Y

N

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RI_LMR (

TxFCf(OAM),

RxFCf(OAM),

TxFCb(OAM),

RxFCl)

& DE==<false>

Figure 8-40 – LMx Reception Behaviour

Counter Part

This part receives ETH_CI, extracts on-demand ETH OAM frames and forwards the remainder as ETH_AI traffic units. It counts this the number of ETH_AI instances with ETH_AI_P signal equal to MI_LM_Pri and ETH_AI_DE equal to <false (0)>.

LMM Reception Part

This part processes received LMM Traffic Units. It checks the destination address, the DA must be either the Local MAC address or it should be a Multicast Class 1 Destination Address. If this is the case the LMM Reception process writes the Rx Counter value to the received Traffic Unit in the RxFCf field, and forwards the received Traffic Unit and complementing P and DE signals as Remote Information to the LMR Generation Process.

LMR Reception Part

This part process received LMR Traffic Units. If the DA equals the Local MAC address, it extracts the counter values TxFCf, RxFCf, TxFCb from the received Traffic Unit as well as the SA field. These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals.

13. Update clause 8.1.10 for DM
Change or add the text in RED:
8.1.10
Delay Measurement (DM) Processes
8.1.10.1
Overview

Figure 8-41 shows the different processes inside MEPs and MIPs that are involved in the on-demand Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_C_D Traffic Units and the complementing P and D signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

[image: image9.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

DMM

Generation

DMR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

DMM Reception

DMR Generation

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

RI_DMM(D,P,DE)

D,P,DE

D,P,DE

DM

Control

MI_DM_Start(DA,P,

Test ID, Length,Period)

MI_DM_Terminate

DMM(DA,P,0,Test ID TLV,TLV)

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

MI_MEP_MAC

MI_MEP_MAC

rSA,

MI_DM_Result(

count, B_FD[], F_FD[] ,N_FD[])

On-demand

Figure 8-41 – Overview of Processes involved with on-demand Delay Measurement

The MEP on-demand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP on-demand-OAM Sink extraction process in clause 9.4.1.2.
The on-demand DM control process controls the on-demand DM protocol. The protocol is activated upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period) signal and remains activated until the MI_DM_Terminate signal is received. The result is communicated via the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal. If the on-demand DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME.If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
The DMM generation process generates DMM Traffic Units that pass through MIPs transparently, but are received and processed by DMM Reception processes in MEPs. The DMR Generation process may generate a DMR Traffic Unit in response. This DMR Traffic Unit also passes transparently through MIPs, but is received and processed by DMR Reception processes in MEPs.

At the Source MEP side, the DMM generation process stamps the value of the Local Time to the TxTimeStampf field in the DMM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the DMM reception process stamps the value of the Local Time to the RxTimeStampf field in the DMM message when the last bit of the frame is received.

The DMR generation and reception process stamps with the same way as the DMM generation and reception process.
Figure 8-41+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_C_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
[image: image10.emf]Extraction

Insertion

DMM

Generation

DMR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

Insertion

Proactive-OAM

Extraction

DMM Reception

DMR Generation

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

RI_DMM(D,P,DE)

D,P,DE

D,P,DE

DM

Control

MI_DM_Enable

DMM(DA,P,1,Test ID TLV,TLV)

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,RxTimeb,

MI_MEP_MAC

MI_MEP_MAC

rSA,

Proactive-OAM

Proactive-OAM

Proactive-OAM

MI_DM_Period

MI_DM_Pri

DM_Result

Proactive

MI_DM_MAC_DA

MI_DM_Length

MI_DM_Test_ID

rTestID)

Figure 8-41+yy – Overview of Processes involved with proactive Delay Measurement

The MEP Proactive OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive DM control process controls the proactive DM protocol. If MI_DM_Enable is set the DMM frames are sent periodically. The DMM frames are generated with a periodicity determined by MI_DM_Period and with a priority determined by MI_DM_Pri. The result (B_FD, F_FD, N_FD) is reported per a DMR reception. If the proactive DM control process activates the multiple monitoring on different CoS levels simultaneously, each result is independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the test result is independently managed per peer node.
8.1.10.2
DM Control Process

The behaviour of the on-dmand DM Control Process is defined in Figure 8-42.

[image: image11.emf]Init

MI_DM_Terminate

Running

Timer

DMM(DA,P,0,Test ID TLV,TLV)

Running

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

B_FD[count]=(RxTimeb–TxTimeStampf)

Init

Running

Set(0,Timer)

Set(Period,Timer)

–(TxTimeStampb–RxTimeStampf)

Y

N

rSA,

rSA=DA?

MI_DM_Result(

count, B_FD[], F_FD[] ,N_FD[])

F_FD[count] = RxTimeStampf–TxTimeStampf

N_FD[count] = RxTimeb–TxTimeStampb

Y

N

TxTimeStampb=

RxTimeStampf=0?

F_FD[count] = Invalid

N_FD[count] = Invalid

count=0

count++

MI_DM_Start(

DA,P,TestID,Length,Period)

N

Y

TestID!=NULL and

rTestID!=TestID

TLV=Generate(Length)

Test ID TLV=GenID(Test ID)

Figure 8-42 – On-demand DM Control Behaviour

Upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period), the DM protocol is started. Every Period the generation of a DMM frame is triggered (using the DMM(DA,P,0,Test ID TLV,TLV) signal), until the MI_DM_Terminate signal is received. The TLV field of the DMM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the DMM frame.
Upon receipt of a DMR Traffic Unit the Delay value recorded by this particular DMR Traffic Unit is calculated. This result is reported using the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal after the receipt of the MI_DM_Terminate signal. Note that the measurements of F_FD and N_FD are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero.
[image: image12.emf]Disabled

MI_DM_Enable

Enabled

Timer

DMM(MI_DM_MAC_DA,

Running

B_FD=(RxTimeb–TxTimeStampf)

Running

Set(0,Timer)

Set(MI_DM_Period,Timer)

DM_Result(B_FD, F_FD, N_FD)

–(TxTimeStampb–RxTimeStampf)

Y

N

rSA=DA?

F_FD = RxTimeStampf–TxTimeStampf

N_FD = RxTimeb–TxTimeStampb

Y

N

TxTimeStampb=

RxTimeStampf=0?

F_FD= Invalid

N_FD = Invalid

!MI_DM_Enable

TLV=Generate(

MI_DM_Length)

MI_DM_Pri,

1,

Test ID TLV,

TLV)

N

YMI_DM_TestID!=NULL and

rTestID!=MI_DM_TestID

RI_DMR(

TxTimeStampf,

RxTimeStampf,

TxTimeStampb,

RxTimeb,

rTestID)

rSA,

Test ID TLV=GenID(

MI_DM_TestID)

Figure 8-42+yy – Proactive DM Control Behaviour

The behaviour of the proactive DM Control Process is defined in Figure 8-42+yy. If the MI_DM_Enable is asserted, the process starts to generate DMM frames (using the DMM(MI_DM_MAC_DA,MI_DM_Pri,1,Test ID TLV,TLV) signal). The result (B_FD, F_FD, N_FD) is reported per a DMR reception.
8.1.10.3 DMM Generation Process

The behaviour of the DMM Generation Process is defined in Figure 8-43

 [image: image13.emf]DMM(DA,P

OAM=DMM(DA,P,

Type,TestID TLV,TLV)

D(OAM), P(P),

DE(0)

TxTimeStampf(OAM)=

Local Time

Type,TestID TLV,TLV)

Figure 8-43 – DMM Generation Behaviour

Upon receiving the DMM(DA,P,Type,Test ID TLV,TLV), a single DMM Traffic Unit is generated together with the complementing P and DE signals. The DA of the generated Traffic Unit is determined by the DMM(DA) signal. The TxTimeStampf field is assigned the value of the local time.

The P signal value is defined by DMM(P). The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the DMM(Test ID TLV) signal. The TLV signal is determined by the DMM(TLV) signal. If both Test ID TLV and Data TLV are included in the DMM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=DMM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=47 (DMM)

	17
	0
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =32
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for DMM receiving equipment)

	29
	
	

	33
	
	0 (Reserved for DMR)

	37
	
	

	41
	
	0 (Reserved for DMR receiving equipment)

	45
	

	49
	
	Test ID TLV=DMM(Test ID TLV)

	53
	Test ID TLV Continued
	Data TLV= DMM (TLV)

	57
	

	61
	

	:
	

	Last
	
	END TLV (0)

	
	
	
	

Figure 8-44 – DMM Traffic Unit

8.1.10.4
DMM Reception Process

The DMM Reception Process processes the received DMM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-45.

[image: image14.emf]D(OAM),

P(P),

DE(DE)

RI_DMM(OAM, P, DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxTimeStampf(OAM)=

Local_Time

Y

N

Waiting

Figure 8-45 – DMM Reception Behaviour

First the DA is checked, it should be the Local MAC address or a Multicast Class 1 address, otherwise the frame is ignored.

If the DA is the Local MAC or a Multicast Class 1 address the RxTimeStampf field is assigned the value of the Local Time and Traffic Unit and the complementing P and DE signals are forwarded as Remote Information to the DMR Generation Process.

8.1.10.5
DMR Generation Process

The DMR Generation Process generates a DMR Traffic Unit and its complementing P and DE signals. The behaviour is defined in Figure 8-46.

[image: image15.emf]Waiting

RI_DMM(OAM, P, DE)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=DMR

TxTimeStampb(OAM)=Local Time

Figure 8-46 – DMR Generation Behaviour

Upon the receipt of Remote Information containing a DMM Traffic Unit, the DMR generation process generates a DMR Traffic Unit and forwards it to the OAM insertion Process.

As part of the DMR generation the:

· DA of the DMR Traffic Unit is the SA of the original DMM Traffic Unit;

· The Opcode is changed into DMR Opcode;

· The TxTimeStampb field is assigned the value of the Local Time.
· All the other fields (including TLVs and padding after the End TLV) are copied from the Remote Information containing the original DMM Traffic Unit.
The resulting DMR Traffic Unit is shown in Figure 8-47.

NOTE – In the generated DMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the Local MAC address, and the MEL will be over written with MI_MEL.

The TLVs are copied from the Remote Information containing the original DMM Traffic Unit. If multiple TLVs exist, the order of the TLVs is unchanged.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_DMM(D))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version= Version
(RI_DMM(D))
	Opcode=46 (DMR)

	17
	Flags=
Flags(RI_DMM(D))
	TLV Offset=
TLV Offset(RI_DMM(D))
	TxTimeStampf=TxTimeStampf(RI_DMM(D))

	21
	
	

	25
	
	RxTimeStampf=RxTimeStampf(RI_DMM(D))

	29
	
	

	33
	
	TxTimeStampb=Local Time

	37
	
	

	41
	
	0 (Reserved for DMR reception process)

	45
	

	49
	
	Test ID TLV=Test ID(RI_DMM(D)) if exists

	53
	Test ID TLV Continued
	Data TLV= TLV (RI_DMM(D)) if exists

	57
	

	61
	

	:
	

	last
	
	END TLV=
END TLV(RI_DMM(D))

	
	
	
	

Figure 8-47 – DMR Traffic Unit

8.1.10.6
DMR Reception Process

The DMR Reception Process processes the received DMR Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-48.

[image: image16.emf]D(OAM),

P(P),

DE(DE)

RI_DMR(

TxTimeStampf(OAM),

Local Time,

Test ID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RxTimeStampf(OAM),

TxTimeStampb(OAM),

SA(OAM),

Figure 8-48 – DMR Reception Behaviour

Upon receipt of a DMR Traffic Unit the DA field of the Traffic Unit is checked. If the DA field equals the Local MAC address, the DMR Traffic Unit is processed further, otherwise it is ignored.

If the DMR Traffic Unit is processed, the TxTimeStampf, RxTimeStampf, TxTimeStampb and Test ID are extracted from the Traffic Unit and signalled together with the Local Time.

8.1.11
One Way Delay Measurement (1DM) Processes
8.1.11.1
Overview

Figure 8-49 shows the different processes inside MEPs and MIPs that are involved in the on-demand One Way Delay Measurement Protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_CI_D Traffic Units and the complementing P and DE signals going through an MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM Traffic Units.

[image: image17.emf]Insertion

1DM

Generation

OnDemand-OAM

ExtractionExtraction

1DM

Reception

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

D,P,DED,P,DE

1DM

Control_So

MI_1DM_Start(DA,P,

Test ID,Length,Period)

MI_1DM_Terminate

1DM(DA,P,0,Test ID TLV,TLV)

1DM

Control_Sk

MI_1DM_Start(SA,TestID)

MI_MEP_MAC

MI_1DM_Result

(count, N_FD[])

OnDemand-OAMOnDemand-OAM

MI_1DM_Terminate

OnDemand

OnDemand

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

Figure 8-49 – Overview of Processes involved with on-demand One Way Delay Measurement

The on-demand 1DM protocol is controlled by the on-demand 1DM Control_So and 1DM Control_Sk processes. The on-demand 1DM Control_So process triggers the generation of 1DM Traffic Units upon the receipt of an MI_1DM_Start(DA,P,Test ID,Length,Period) signal. The on-demand 1DM Control_Sk process processes the information from received 1DM Traffic Units after receiving the MI_1DM_Start(SA,Test ID) signal.

The 1DM generation process generates 1DM messages that pass transparently through MIPs and are received and processed by the 1DM Reception Process in MEPs.

At the Source MEP side, the 1DM generation process stamps the value of the Local Time to the TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well that at the sink MEP side, the 1DM reception process records the value of the Local Time when the last bit of the frame is received.
Figure 8-49+yy shows the different processes inside MEPs and MIPs that are involved in the proactive Delay Measurement Protocol.
[image: image18.emf]Insertion

1DM

Generation

OnDemand-OAM

ExtractionExtraction

1DM

Reception

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

D,P,DED,P,DE

1DM

Control_So

1DM(DA,P,1,Test ID TLV,TLV)

1DM

Control_Sk

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

MI_1DM_MAC_SA

MI_1DM_Enable

MI_MEP_MAC

1DM_Result

Proactive-OAMProactive-OAM

MI_1DM_Enable

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Length

Proactive

Proactive

MI_1DM_TestID

MI_1DM_TestID

Figure 8-49+yy – Overview of Processes involved with proactive One Way Delay Measurement

The MEP Proatcive-OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-OAM Sink extraction process in clause 9.2.1.2.
The proactive 1DM Control_So process triggers the generation of 1DM Traffic Units if MI_1DM_Enable signal is set. The 1DM frames are generated with a periodicity determined by MI_1DM_Period and with a priority determined by MI_1DM_Pri. The result (N_FD) is reported per a 1DM reception by the 1DM Control_Sk process.

8.1.11.2
1DM Control_So Process

Figure 8-50 shows the behaviour of the on-demand 1DM Control_So Process. Upon receipt of the MI_1DM_Start(DA,P,Test ID,Length,Period) signal the 1DM protocol is started. The protocol will run until the receipt of the MI_1DM_Terminate signal.

If the DM protocol is running every Period (as specified in the MI_1DM_Start signal) the generation of a 1DM message is triggered by generating the 1DM(DA,P,0,Test ID TLV,TLV) signal towards the 1DM Generation Process. The TLV field of the 1DM frames can have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test and the value ‘Test ID’ is included in the TLV. The second one is the Data TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern to be included in the 1DM frame.
[image: image19.emf]Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

1DM(DA,P)

Set(0,Timer)

Set(Period,Timer)

Init

MI_1DM_Start(

DA,P,TestID,Length,Period)

MI_1DM_Terminate

Running

Timer

1DM(DA,P,0,

Set(0,Timer)

Set(Period,Timer)

TLV=Generate(Length)

Test ID TLV=GenID(Test ID)

Test ID TLV,TLV)

Figure 8-50 – On-demand 1DM Control_So Behaviour
[image: image20.emf]Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

Timer

Set(0,Timer)

TLV=Generate(

MI_1DM_Length)

1DM(MI_1DM_MAC_DA,

Set(MI_1DM_Period,Timer)

MI_1DM_Pri,

1,

TLV)

Test ID TLV,

Test ID TLV=GenID(

MI_1DM_Test ID)

Figure 8-50+yy – Proactive 1DM Control_So Behaviour

The behaviour of the proactive 1DM Control Process is defined in Figure 8-50+yy.
If the MI_1DM_Enable is asserted, the process starts to generate 1DM frames (using the 1DM(MI_1DM_MAC_DA,MI_1DM_Pri,1,Test ID TLV,TLV) signal.
8.1.11.3
1DM Generation Process

[image: image21.emf]1DM(DA,P,

Type,TestID TLV,TLV)

Waiting

OAM=1DM(

DA,

P,

LocalTime,

)

D(OAM), P(P), DE(0)

Type,

TLV

Test ID TLV,

Figure 8-51 – 1DM Generation Behaviour

Figure 8-51 shows the 1DM Generation Process. Upon receiving the 1DM(DA,P,Type,Test ID TLV,TLV) signal a single 1DM Traffic Unit is generated by the OAM=1DM (DA,P,Type, LocalTime, Test ID TLV, TLV) call.

Together with this 1DM Traffic Unit the complementing P and DE signals are generated. The DA of the generated 1DM Traffic Unit is determined by the 1DM(DA) signal. The TxTimeStampf field is assigned the value of the Local Time. The value of the P signal is determined by the 1DM(P) signal. The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is determined by the 1DM(Test ID TLV) signal. The TLV signal is determined by the 1DM(TLV) signal.
The resulting Traffic Unit is shown in Figure 8-52.

NOTE – In the generated 1DM Traffic Unit, in the OAM (MEP) Insertion process, the SA will be assigned the Local MAC address, and the MEL will be assigned by MI_MEL.

If both Test ID TLV and Data TLV are included in the 1DM PDU, it is recommended that Test ID TLV be located at the beginning of the optional TLV field. It makes for the easier classification of the Test ID in the received PDUs.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=1DM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=
Undef
	Version=1
	Opcode=45 (1DM)

	17
	0
	0
	0
	0
	0
	0
	Type
	TLV Offset =16
	TxTimeStampf=Local Time

	21
	
	

	25
	
	0 (Reserved for 1DM receiving equipment)

	29
	
	

	33
	
	Test ID TLV=1DM(Test ID TLV)

	37
	Test ID TLV Continued
	Data TLV=1DM(TLV)

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

	
	
	
	

Figure 8-52 – 1DM Traffic Unit

8.1.11.4
1DM Reception Process

The 1DM Reception Process processes the received 1DM Traffic Units and the complementing P and DE signals. The behaviour is defined in Figure 8-53.

[image: image22.emf]D(OAM),

P(P),

DE(DE)

1DM(SA(OAM),

TxTimeStampf(OAM),

Local Time,

TestID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

DA(OAM)=MC Class1

or

Figure 8-53 – 1DM Reception Behaviour

Upon receipt of a 1DM Traffic Unit the DA field is checked. The 1DM Traffic Unit is processed if the DA is equal to the Local MAC address or Multicast Class 1 MAC address. Otherwise, the Traffic Unit is ignored.

If the 1DM Traffic Unit is processed the SA and TxTimeStampf fields are extracted and forwarded to the 1DM Control_Sk process together with the Local Time using the 1DM(rSA,TxTimeStampf,RxTimef,rTestID) signal.
8.1.11.5
1DM Control_Sk Process

Figure 8-54 shows the behaviour of the on-demand 1DM Control_Sk process. The MI_1DM_Start(SA) signal starts the processing of 1DM messages coming from a MEP with SA as MAC address. The protocol runs until the receipt of the MI_1DM_Terminate signal.

While running the process processes the received 1DM(rSA,TxTimeStampf,RxTimef,rTestID) information. First the rSA is compared with the SA from the MI_1DM_Start (SA) signal. If the rSA is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID from the MI_1DM_Start (Test ID) signal. If the MI_1DM_Start (Test ID) signal is configured and rTestID is available but both values are different, the information is ignored. Otherwise the Delay from the single received 1DM Traffic Unit is calculated. This result is reported using the MI_1DM_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal.

[image: image23.emf]Init

MI_1DM_Start(SA,TestID)

MI_1DM_Terminate

Running

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

N_FD[count] = RxTimef–TxTimeStampf

rSA=SA?

Y

N

Count=0Count=0

count++

MI_1DM_Result (count, N_FD[])

N

Y

Test ID!=NULL and

rTestID!=TestID

Figure 8-54 – On-demand 1DM Control_Sk Process

[image: image24.emf]Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

N_FD = RxTimef–TxTimeStampf

rSA=

MI_1DM_MAC_SA?

Y

N

1DM_Result(N_FD)

N

Y

MI_1DM_TestID!=NULL and

rTestID!=MI_1DM_TestID

1DM(rSA,TxTimeStampf,

RxTimef,rTestID)

Figure 8-54+yy – Proactive 1DM Control_Sk Process

The behaviour of the proactive 1DM Control_Sk Process is defined in Figure 8-54+yy. If the MI_1DM_Enable is asserted, the result (N_FD) is reported per a 1DM reception.
14. Add new clause 8.1.14 for SLM
8.1.14
Synthetic Loss measurement (SL) Processes
8.1.14.1
Overview

Figure 8-xx shows the different processes inside MEPs and MIPs that are involved in the on-demand synthetic loss measurement protocol.

The MEP On-demand OAM insertion process is defined in clause 9.4.1.1, the MEP OAM on-demand extraction process in clause 9.4.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_C_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
 [image: image25.emf]OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

SLM

Generation

SLR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

SLM Reception

SLR Generation

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

SL

Control

MI_SL_Start(DA,P,

Test_ID,Length,Period)

MI_SL_Terminate

SLM (DA, P, MEP_ID,

RI_SLR(

rTest_ID

TxFCf,

TxFCb)

MI_MEP_MAC

MI_MEP_MACMI_MEP_MAC

rMEP_ID,

MI_SL_Result(

N_TF,N_LF,F_TF,F_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

RI_SLM (

OAM, P, DE,

TxFCb)

MI_MEP_ID

OnDemand

Figure 8-xx – Overview of processes involved with on-demand synthetic loss measurement protocol

The SL protocol is controlled by the SL Controlprocess.

The On-demand SL Control process is activated upon receipt of the MI_SL_Start(DA,P,Length,Period) signal and remains activated until the MI_SL_Terminate signal is received. The measured synthetic loss values are output after the MI_SL_Terminate signal via the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal
The SLM generation process generates SLM traffic units that pass through MIPs transparently, but are received and processed by SLM reception processes in MEPs. The SLR generation process may generate an SLR traffic unit in response. This SLR traffic unit also passes transparently through MIPs, but is received and processed by SLR reception processes in MEPs.

Figure 8-xx+1 shows the different processes inside MEPs and MIPs that are involved in the proactive synthetic loss measurement protocol.
The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.1, and the MIP OAM insertion process in clause 9.4.2.2. In summary, they insert and extract ETH_CI OAM signals into and from the stream of ETH_C_D traffic units and the complementing P and D signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct MEL and SA values into the OAM traffic units.
 [image: image26.emf]Extraction

OAM

Insertion

SLM

Generation

SLR

Reception

OnDemand-OAM

Insertion

OnDemand-OAM

Extraction

Insertion

Extraction

SLM Reception

SLR Generation

MEPMIPMEP

ETH_CIETH_CIETH_CIETH_CI

ETH_CIETH_CIETH_CIETH_CI

D,P,DE

D,P,DE

D,P,DE

D,P,DE

SLM (DA, P, MEP_ID,

RI_SLR(

TxFCf, TxFCb)

MI_MEP_MAC

MI_MEP_MACMI_MEP_MAC

rMEP_ID, rTestID,

RI_SL_Result(

N_TF,N_LF,F_TF,F_LF)

Test_ID, TxFCl, TLV)

MI_MEP_ID

RI_SLM (

OAM, P, DE,

TxFCb)

MI_MEP_ID

SL

Control

Proactive

Proactive OAM Proactive

OAM

Proactive

OAM

Proactive

MI_SL_Enable

MI_SL_Period

MI_SL_Pri

MI_SL_MAC_DA

MI_SL_Length

MI_SL_Test_ID

Figure 8-xx+1 – Overview of processes involved with proactive synthetic loss measurement protocol

The SL protocol is controlled by the Proactive SL Control processes.

The Proactive SL Control process is activated upon receipt of the MI_SL_Enable signal and remains activated until the signal is deactivated. The measured results are output every 1s using the RI_SL_Result (N_TF, N_LF, F_TF, F_LF) signal.
8.1.14.2
SL Control process
The behaviour of the on-demand SL Control process is defined in Figure 8-xx+2. There are multiple instances of the on-demand SL Control process, each handling an independent stream of SLM frames.

 [image: image27.emf]Init

MI_SL_Start (

DA, P, Test_ID, Length, Period)

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

TimeoutTimerMI_SL_Terminate

TLV = Generate

(Length)

TxFCl++

SLM (DA, P,

MEP_ID,

Test_ID,

TxFCl, TLV)

MI_SL_Result (

N_TF, N_LF, F_TF, F_LF)

Set (5s,

TimeoutTimer)

Running

Set (Period,

TxTimer)

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

Reset (TxTimer)

Figure 8-xx+2 – On-demand SL Control behaviour
Upon receipt of the MI_SL_Start(DA,P,Test ID,Length,Period), the SL protocol is started. Every designated ‘period’ the generation of an SLM frame is triggered (using the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal), until the MI_SL_Terminate signal is received. The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV field of the SLM frames is determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length ‘Length’ of arbitrary bit pattern, as described in section 8.1.8.2. If the Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. This result is reported using the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal after the receipt of the MI_SL_Terminate signal.
The behaviour of the Proactive SL Control process is defined in Figure 8-xx+3. There are multiple instances of the Proactive SL Control process, each handling an independent stream of SLM frames.

 [image: image28.emf]Init

MI_SL_Enable

Set (0, TxTimer)

N_TF = N_LF = F_TF = F_LF = 0

Saved = false

TxTimer

RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)

ReportTimer!MI_SL_Enable

TLV = Generate

(MI_SL_Length)

TxFCl++

If saved THEN {

 N_TF += |TxFCb – TxFCb_svd|

 N_LF += |TxFCb – TxFCb_svd| -|RxFCl – RxFCl_svd|

 F_TF += |TxFCf – TxFCf_svd|

 F_LF += |TxFCf – TxFCf_svd| -|TxFCb – TxFCb_svd|

}

SLM (MI_SL_MAC_DA,

MI_SL_Pri,

MI_SL_MEP_ID,

MI_SL_Test_ID,

TxFCl,TLV)

RI_SL_Result(

N_TF,N_LF,

F_TF,F_LF)

Set (1s,

ReportTimer)

Running

Set (1s,

ReportTimer)

Set (MI_SL_Period,

TxTimer)

TxFCf_svd = TxFCf

TxFCb_svd = TxFCb

RxFCl_svd = RxFCl

RxFCl++

saved = true

N_TF = 0

N_LF = 0

F_TF = 0

F_LF = 0

Figure 8-xx+3 – Proactive SL Control behaviour
Upon receipt of the MI_SL_Enable, the SL protocol is started. Every designated MI_SL_Period the generation of an SLM frame is triggered (using the SLM(MI_SL_MAC_DA,MI_SL_Pri,MI_SL_MEP_ID,MI_SL_Test_ID,TxFCl,TLV) signal). The TLV field of the SLM frames is determined by the Generate(MI_SL_Length) function. Generate(MI_SL_Length) generates a Data TLV with MI_SL_ Length of arbitrary bit pattern, as described in section 8.1.8.2. If the MI_SL_Length is 0, the TLV is set to NULL.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and far-end transmitted and lost synthetic frames. The calculation is performed every 1s and the RI_SL_Result(N_TF, N_LF, F_TF, N_LF) signal is generated.
8.1.14.3 SLM generation process
The behaviour of the SLM generation process is defined in Figure 8-xx+4.
[image: image29.emf]SLM(DA,P,MEP_ID,

OAM=SLM(DA,P,MEP_ID,

Test_ID,TxFCl,TLV)

D(OAM), P(P),

DE(0)

Test_ID,TxFCl,TLV)

Figure 8-xx+4 – SLM generation behaviour
Upon receiving the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV), a single SLM traffic unit is generated together with the complementing P and DE signals. The DA, Source MEP_ID, Test_ID and TxFCf of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl respectively in the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not NULL, the specified TLV is appended to the traffic unit as shown in Figure 8-xx+5.
The P signal value is defined by SLM(P). The DE signal is set to 0.
	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SLM(DA)

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=55 (SLM)

	17
	Flags=0
	TLV Offset = 16
	Source_MEP_ID = SLM(MI_MEP_ID)

	21
	0 (reserved for Responder_MEP_ID)
	Test_ID = SLM(Test_ID)

	25
	Test_ID Continued
	TxFCf = SLM(TxFCl)

	29
	TxFCf Continued
	Reserved for TxFCb

	33
	Reserved Continued
	TLV = SLM(TLV)

	37
	

	41
	

	45
	

	:
	

	last
	
	END TLV (0)

Figure 8-xx+5 – SLM traffic unit
8.1.14.4
SLM reception process
The SLM reception process processes the received SLM traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+6.
 [image: image30.emf]D(OAM),

P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC or

DA(OAM)=MC Class1

RxFCl(D(MEP_ID), D(Test_ID)) ++

Y

N

Waiting

TxFCb= RxFCl(D(MEP_ID), D(Test_ID))

RI_SLM(OAM, P, DE,

TxFCb)

Figure 8-xx+6 – SLM reception behavior
First the DA is checked, it should be the local MAC address or a Multicast Class 1 address, otherwise the frame is ignored.

If the DA is the local MAC or a Multicast Class 1 address, the MEP_ID and the Test_ID fields are extracted from the traffic unit. The local received counter RxFCl maintained per MEP_ID and Test_ID values, is incremented. The received OAM information, P and DE signals, as well as local TxFCb value are forwarded as remote information to the SLR generation process using the RI_SLM(OAM,P,DE, TxFCb) signal.
NOTE – The SLM reception process allocates and maintains local resources for the counter RxFCl per MEP_ID and Test_ID. To facilicate the automatic release of local resources, a timer for monitoring no receipt of SLM can be utilized. The SLM reception process must ensure there’s no discontinuity in RxFCl for given MEP ID and Test ID for some interval (e.g, 5 minutes) after the last received SLM for that MEP ID and Test ID. Detail mechanism for the release is out of scope of this recommendation.
8.1.14.5
SLR generation process
The SLR generation process generates an SLR traffic unit and its complementing P and DE signals. The behaviour is defined in Figure 8-xx+7.

 [image: image31.emf]Waiting

RI_SLM (OAM,P,DE,

TxFCb)

D(OAM),

D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)

SA(OAM)=Undefined

OPC(OAM)=SLR

Responder_MEP_ID(OAM)=MI_MEP_ID

TxFCb(OAM)=TxFCb

Figure 8-xx+7 – SLR generation behaviour
Upon the receipt of the RI_SLM (P,DE,OAM, TxFCb) signal containing an SLM traffic unit, the SLR generation process generates an SLR traffic unit and forwards it to the MEP OAM insertion process.

As part of the SLR generation:

–
The DA of the SLR traffic unit is the SA of the original SLM traffic unit;
–
The Opcode is changed into SLR Opcode;
–
The Responder MEP_ID is set to MI_MEP_ID;

–
TxFCb field is assigned the TxFCb value passed in the SLR(TxFCb).
–
The other fields and optional TLVs are copied from the SLM.

The resulting SLR traffic unit is shown in Figure 8-xx+8.

NOTE – In the generated SLR, in the OAM (MEP) insertion process, the SA will be overwritten with the local MAC address, and the MEL will be overwritten with MI_MEL.

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=SA(RI_SLM (OAM))

	5
	
	SA=Undefined

	9
	

	13
	Ethertype=89-02
	MEL=Undef
	Version=0
	Opcode=54(SLR)

	17
	Flags=Flags
(RI_SLM(OAM))
	TLV Offset =
TLV Offset((RI_SLM(OAM))
	Source_MEP_ID = Source_MEP_ID((RI_SLM(OAM))

	21
	Responder_MEP_ID = MI_MEP_ID
	Test_ID = Test_ID((RI_SLM(OAM))

	25
	Test_ID Continued
	TxFCf = TxFCf((RI_SLM(OAM))

	29
	TxFCf Continued
	TxFCb = (RI_SLM(TxFCb)

	33
	TxFCb Continued
	TLV = TLV((RI_SLM(OAM))

	37
	

	31
	

	35
	

	:
	

	last
	
	END TLV =
END TLV(SLR(OAM))

Figure 8-xx+8 – SLR traffic unit
8.1.14.6
SLR reception process
The SLR reception process processes the received SLR traffic units and the complementing P and DE signals. The behaviour is defined in Figure 8-xx+9.
[image: image32.emf]D(OAM),

P(P),

DE(DE)

RI_SLR(

Test ID(OAM),

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

TxFCf(OAM),

TxFCb(OAM))

MEP_ID(OAM),

Figure 8-xx+9 – SLR reception behavior
Upon receipt of an SLR traffic unit, the DA field of the traffic unit is checked. If the DA field equals the local MAC address, the SLR traffic unit is processed further, otherwise it is ignored.

If the SLR traffic unit is processed, Test_ID, TxFCf, TxFCb, Responder MEP_ID,are extracted from the traffic unit and signaled, using the RI_SLR(MEP_ID, Test_ID,TxFCf,TxFCb) signal.
15. Add new clause 8.1.15 for CSF
8.1.15
CSF Insert Process

[image: image33.emf]D

DEP

CSF

Insert

MI_MEP_MAC

MI_MEL

MI_CSF_Period

MI_CSF_Pri

D

DEP

aCSF-RDI

aCSF-FDI

aCSF-LOS

Figure 8-zz – CSF Insert process

Figure 8-zz shows the CSF Insert Process Symbol and Figure 8-zz+1 defines the behaviour. If the aCSF signal is true, the CSF Insert process continuously generates ETH_CI traffic units where the ETH_CI_D signal contains the CSF signal until the aCSF signal is false. The generated CSF traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic units and the generated CSF traffic units.

[image: image34.emf]CSF Disabled

aCSF(1)Timer

D(OAM),

P(MI_CSF_Pri),

DE(0)

OAM=CSF(

MI_MEP_MAC,

MI_MEL,

MI_CSF_Period

)

CSF Enabled

aCSF(0)

Set(0,Timer)

Set(MI_CSF_Period, Timer)

D(D), P(P), DE(DE)

D(D), P(P), DE(DE)

CSF_Type

Figure 8-zz+1 – CSF Insert behaviour

The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter. Allowed values are once per second and once per minute; the encoding of these values is defined in Table 8-zz. Note that these encoding are the same as for the LCK/AIS generation process.
Table 8-zz – CSF period values

	3-bits
	Period Value
	Comments

	000
	Invalid Value
	Invalid value for CSF PDUs

	001
	FFS
	FFS

	010
	FFS
	FFS

	011
	FFS
	FFS

	100
	1s
	1 frame per second

	101
	FFS
	FFS

	110
	1 min
	1 frame per minute

	111
	FFS
	FFS

The ETH_CI_D signal contains a Source and Destination address field and an M_SDU field. The format of the M_SDU field for CSF traffic units is defined in clauses 9.1 and 9.12 of [ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_ MEL input parameter.
The values of the Source and Destination address fields in the ETH_CI_D signal are determined by the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA). The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as defined in [IEEE 802.1ag]. The value of MI_MEP_MAC should be a valid unicast MAC address.

The CSF_Type is encoded in the three bits of the Flags field in the CSF PDU using the values from Table 8-xx+1.
Table 8-zz+1 – CSF type values
	Value
	Type
	Comments

	000
	LOS
	Client Loss of Signal

	001
	FDI/AIS
	Client Forward Defect Indication

	010
	RDI
	Client Reverse Defect Indication

	011
	DCI
	Client Defect Clear Indication

The periodicity (as defined by MI_CSF_Period) is encoded in the three least significant bits of the Flags field in the CSF PDU using the values from Table 8-zz.

The CSF (SA, MEL, Type, Period) function generates a CSF Traffic Unit with the SA, MEL, Type and Period fields defined by the values of the parameters. Figure 8-zz+2 below shows the ETH_CI_D signal format resulting from the function call from Figure 8-zz+1:

OAM=CSF(
MI_MEP_MAC,
MI_MEL,
CSF_Type,
MI_CSF_Period
)

	
	1
	2
	3
	4

	
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1
	8
	7
	6
	5
	4
	3
	2
	1

	1
	DA=01-80-C2-00-00-3x, where x=MI_MEL

	5
	
	SA=MI_MEP_MAC

	9
	

	13
	Ethertype=89-02
	MEL=
MI_ MEL
	Version=0
	Opcode=52 (CSF)

	17
	0
	0
	CSF
Type
	Period=
MI_CSF_Period
	TLV Offset = 0
	END TLV=0
	

Figure 8-zz+2 – CSF Traffic Unit
8.1.16
CSF Extract Process
[image: image35.emf]CSF Extract

PD

D

E

PD

D

E

MI_MEL

C

S

F

Figure 8-zz+3 – CSF Extract process

The CSF Extract process extracts ETH_CI_CSF signals from the incoming stream of ETH_CI traffic units. ETH_CI_CSF signals are only extracted if they belong to the MEL as defined by the MI_MEL input parameter.

If an incoming traffic unit is a CSF traffic unit belonging to the MEL defined by MI_MEL, the ETH_CI_CSF signal will be extracted from this traffic unit and the traffic unit will be filtered. The ETH_CI_CSF is the CSF Specific Information contained in the received Traffic Unit. All other traffic units will be transparently forwarded. The encoding of the ETH_CI_D signal for CSF frames is defined in clause 9.12 of [ITU-T Y.1731].

The criteria for filtering are based on the values of the fields within the M_SDU field of the ETH_CI_D signal:

•
length/type field equals the OAM Ethertype (89-02), and

•
MEL field equals MI_MEL, and

•
OAM type equals CSF (52), as defined in clause 9.12 of [ITU-T Y.1731].

This is defined in Figure 8-zz+3. The function CSF(D) extracts the CSF specific information from the received Traffic Unit.

[image: image36.emf]Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &

MEL(D)==MI_MEL &

OPC(D)=52?

D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Figure 8- zz+4 – CSF Extract Behaviour

16. Update clause 8.6 form ediitorial correction
Change the text in RED:
This process checks whether the length of the MAC frame is allowed. When the processed signal is ETYn_AI frames shorter than 64 bytes are discarded. Frames longer than MI_MAC_Length arediscarded.
17. Update clause 9.1.2 for dFOP-TO
Change or add the text in RED:
9.1.2
Subnetwork Connection Protection Process

SNC Protection with Sublayer monitoring based on TCM is supported.

Figure 9-9 shows the involved atomic functions in SNC/S. The ETH_FT_Sk provides the TSF/TSD protection switching criterion via the ETH/ETH_A_Sk function (SSF/SSD) to the ETH_C function.

[image: image37.emf]ETH_C

ETH/ETH

ETH

ETH_CI_

SSF/SSD

ETH_CI_

SSF/SSD

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_AI

_

TSF/TSD

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_AI

_

TSF/TSD

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH/ETH

ETH

ETH_CI_

D/P/DE

ETH_AI_

D/P/DE

ETH_CI_D/P/DE

WorkingProtection

ETH_CI_

SSF/SSD/

APS

ETH_CI_

SSF/SSD/

APS

Normal

ETH_CI_

APS

ETH_CI_

APS

Figure 9-9 – SNC/S Atomic Functions

The protection functions at both ends operate the same way, by monitoring the working and protection subnetwork connections for defects, evaluating the system status taking into consideration the priorities of defect conditions and of external switch requests, and switching the appropriate subnetwork flow point (i.e., working or protection) to the protected (sub)network flow point.

The signal flows associated with the ETH_C SNC protection process are described with reference to Figure 9-10. The protection process receives control parameters and external switch requests at the MP reference point. The report of status information at the MP reference point is for further study.

[image: image38.emf]ETH_CI_D/P/DE

ETH_CI_D/P/DE

ETH_CI_D/P/DE/APS

workingprotection

ETH_CI_SSF/SSDETH_CI_SSF/SSD

Selector

WP

Bridge

WP

Normal

SNC Protection Process

E

TH_

C_

MI

_PS

ETH_CI_D/P/DE

ETH_CI_D/P/DE

ETH_CI_D/P/DE/APS

workingprotection

ETH_CI_SSF/SSDETH_CI_SSF/SSD

Selector

WP

Bridge

WP

Normal

SNC Protection Process

E

TH_

C_

MI

_PS

Figure 9-10 – SNC/S Protection Process

Source direction:

For a 1+1 architecture, the CI coming from the normal (protected) ETH_FP is bridged permanently to both the working and protection ETH_FP.

For a 1:1 architecture, the CI coming from the normal (protected) ETH_FP is switched to either the working or the protection ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Sink direction:

For a 1+1 or 1:1 architecture, the CI coming from either the working or protection ETH_FP is switched to the normal (protected) ETH_FP. A switch-over from working to protection ETH_FP or vice versa is initiated by the switch initiation criteria defined below.

Switch initiation criteria:

Automatic protection switching is based on the defect conditions of the working and protection (sub)network connections, for SNC/S protection server signal fail (SSF) and server signal degrade (SSD).

In order to allow interworking between nested protection schemes, a hold-off timer is provided. The hold-off timer delays switch initiation, in case of signal fail, in order to allow a nested protection to react and clear the fault condition. The hold-off timer is started by the activation of signal fail and runs for the hold-off time. Protection switching is only initiated if signal fail is still present at the end of the hold-off time. The hold-off time shall be provisionable between 0 and 10 s in steps of 100 ms; this is defined in clause 11.12 of [ITU-T G.8031].

Protection switching can also be initiated by external switch commands received via the MP or a request from the far end via the received ETH_CI_APS. Depending on the mode of operation, internal states (e.g. wait-to-restore) may also affect a switch-over.

See the switching algorithm described in [ITU-T G.8031].

Switching time:

Refer to [ITU-T G.8031].

Switch restoration:

In the revertive mode of operation, the protected signal shall be switched back from the protection (sub)network connection to the working (sub)network connection when the working (sub)network connection has recovered from the fault.

To prevent frequent operation of the protection switch due to an intermittent fault, a failed working (sub)network connection must become fault-free for a certain period of time before it is used again. This period, called the wait-to-restore (WTR) period, should be of the order of 5-12 minutes and should be capable of being set. The WTR is defined in clause 11.13 of [ITU-T G.8031].

In the non-revertive mode of operation no switch back to the working (sub)network connection is

performed when it has recovered from the fault.

Configuration:
The following configuration parameters are defined in [ITU-T G.8031]:
ETH_C_MI_PS_WorkingPortId configures the Working Port.
ETH_C_MI_PS_ProtectionPortId configures the Protection Port.

ETH_C_MI_PS_ProtType configures the protection Type.

ETH_C_MI_PS_OperType configures to be in revertive mode.

ETH_C_MI_PS_HoTime configures the Hold Off Timer.

ETH_C_MI_PS_WTR configures the Wait-To-Restore Timer.

ETH_C_MI_PS_ExtCMD configures the protection group command.

Defects:

The function detects dFOP-PM, dFOP-CM, dFOP-NR and dFOP-TO defects in case the APS protocol is used.
Consequent Actions:

None.

Defect correlations:

cFOP-TO (dFOP-TO and (not dFOP-CM)

18. Update clause 9.1.3 for dFOP-TO
Change or add the text in RED:
9.1.3
Ring Protection Control Process

Ring Protection with Inherent, Sub-Layer, or Test Trail monitoring is supported.

Figure 9-11 shows a subset of the atomic functions involved, and the signal flows associated with the ring protection control process. This is only an overview of the Ethernet Ring Protection Control Process as specified in [ITU-T G.8032]. The ETH_FT_Sk provides the TSF protection switching criterion via the ETH/ETH_A_Sk function (SSF). [ITU-T G.8032] specifies the requirements, options and the ring protection protocol supported by the ring protection control process.
 [image: image39.emf]Ring Protection

Control Process

ETH_CI_RAPS

ETH_CI_SSF

Control

Topology_Change

ETH_CI_SSF

ETH_CI_RAPS

Topology_Change

ETHx

ETHx/ETH-m

ETHDe

ETHD/ETHx

ETHDi

ETHDi/ETH

ETH_CI_SSF

ETH_AI_TSF

ETH_C

ETH_C_MI_RAPS

Figure 9-11 – Ring Protection Atomic Functions and Control Process
Configuration:
The following configuration parameters are defined in [ITU-T G.8032]:
ETH_C_MI_RAPS_RPL_Owner_Node configures the node type.

ETH_C_MI_RAPS_RPL_Neighbour_Node configures the adjacency of a node to the RPL Owner.
ETH_C_MI_RAPS_Propagate_TC[1…M] configures the flush logic of an interconnection node.

ETH_C_MI_RAPS_Compatible_Version configures the Backward compatibility logic.

ETH_C_MI_RAPS_Revertive configures the revertive mode.

ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel configures the sub-ring type.

ETH_C_MI_RAPS_HoTime configures the Hold Off Timer.

ETH_C_MI_RAPS_WTR configures the Wait To Restore Timer.

ETH_C_MI_RAPS_GuardTime configures the Guard Timer.

ETH_C_MI_RAPS_ExtCMD configures the protection command.
Defects:

The function detects dFOP-PM and dFOP-TO in case the R-APS protocol is used.

Consequent Actions:

None.

Defect correlations:

cFOP-PM (dFOP-PM

cFOP-TO (dFOP-TO

19. Update clause 9.2.1.1 for DM
Change or add the text in RED:
9.2.1.1
ETHx Flow Termination source function (ETHx_FT_So)

Symbol

[image: image40.emf]ETHx_FT

ETH_AP

ETH_FP

ETH_MPETH_RP

Figure 9-13 – ETHx_FT_So symbol

Interfaces

Table 9-3 – ETHx_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(rSA,Tx, TimeStamp,
RxTimeStampf,TxTimeStampb,RxTimeb)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(MEP_ID,Test ID,TxFCf, TxFCb)
ETHx_FT_So_MP:

ETHx_FT_So_MI_MEL
ETHx_FT_So_MI_MEP_MAC
ETHx_FT_So_MI_CC_Enable
ETHx_FT_So_MI_LM_Enable
ETHx_FT_So_MI_MEG_ID
ETHx_FT_So_MI_MEP_ID
ETHx_FT_So_MI_CC_Period
ETHx_FT_So_MI_CC_Pri
ETHx_FT_So_MI_DM_Enable
ETHx_FT_So_MI_DM_MAC_DA
ETHx_FT_So_MI_DM_Test_ID
ETHx_FT_So_MI_DM_Length
ETHx_FT_So_MI_DM_Period
ETHx_FT_So_MI_DM_Pri
ETHx_FT_So_MI_1DM_Enable
ETHx_FT_So_MI_1DM_MAC_DA
ETHx_FT_So_MI_1DM_Test_ID
ETHx_FT_So_MI_1DM_Length
ETHx_FT_So_MI_1DM_Period
ETHx_FT_So_MI_1DM_Pri
ETHx_FT_So_MI_SL_Enable
ETHx_FT_So_MI_SL_MAC_DA
ETHx_FT_So_MI_SL_Test_ID
ETHx_FT_So_MI_SL_Length
ETHx_FT_So_MI_SL_Period
ETHx_FT_So_MI_SL_Pri

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_RP:

ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes
 [image: image41.emf]CCM Generation

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

D

DE

P

DPDE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_MEL

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

Data

DataOAM

MI_LM_Enable

O

A

M

Data

Block

RI_CC_Blk

MI_MEP_MAC

CCM Generation

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

D

DPDE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

MI_MEL

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

Data

DataOAM

MI_LM_Enable

ETH_CI_D/P/DE

DPDE

ETH_CI_D/P/DE

DPDE

ETH_CI_D/P/DE

DPDE

ETH_CI_D/P/DE

DPDE

ETH_CI_D/P/DE

DPDE

ETH_CI_D/P/DE

DPDE

Data

Block

RI_CC_Blk

MI_MEP_MAC

C

C

M

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

D

P

DE

D

M

R

DMR

Generation

RI_DMM(OAM,P,DE)

DMM

Generation

D

P

DE

D

M

M

DMM

Generation

D

P

DE

D

M

M

DMM(

DA,P,1,

Test ID TLV,

TLV)

DMM

Z

Y

X

Mux

Proactive DM

Control

MI_DM_Length

MI_DM_Period

MI_DM_Pri

RI_DM_Result

(B_FD,F_FD,N_FD)

MI_DM_MAC_DA

MI_DM_Enable

RI_DMR(rSA, TxTimeStampf,

RxTimeStampf, TxTimeStampb,

RxTimeb,rTestID)

MI_DM_Test_ID

1DM

Generation

D

P

DE

1

D

M

1DM

Generation

D

P

DE

1

D

M

1DM(

DA,P,1,

Test ID TLV,

TLV)

1DM

Z

Y

X

Mux

Proactive 1DM

Control_So

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

MI_1DM_MAC_DA

MI_1DM_Enable

MI_1DM_Test_ID

SLM

Generation

D

P

DE

S

L

M

SLM

Generation

D

P

DE

S

L

M

SLM(

DA,P,

MEP_ID,

Test _ID,

TxFCl,

TLV)

SLM

Z

Y

X

Mux

Proactive SL

Control

MI_SL_Length

MI_SL_Period

MI_SL_Pri

RI_SL_Result

(N_TF,N_LF,F_TF,F_LF)

MI_SL_MAC_DA

MI_SL_Enable

RI_SLR(rMEP_ID,

rTest_ID,TxFCf,TxFCb)

MI_SL_Test_ID

D

P

DE

S

L

R

SLR

Generation

RI_SLM(OAM,P,DE,TxFCb)

Figure 9-14 – ETHx_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC.

If the DA of the OAM Traffic Unit is a Class 1 Multicast DA, the OAM insertion process updates the DA to reflect the correct MEL.

[image: image42.emf]Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

Data.D(D),

Data.P(P),

Data.DE(DE)

D(D),

P(P),

DE(DE)

Waiting

OAM.D(D),

OAM.P(P),

OAM.DE(DE)

D(D),

P(P),

DE(DE)

MEL(D)=MI_MEL

IF(DA(D)==01-80-C2-00-00-3*)

{

x=MI_MEL

DA(D)=01-80-C2-00-00-3x

}

SA(D)=MI_MEP_MAC

Figure 9-15 – OAM MEP Insertion Behaviour
CCM Generation process:

This Process is defined in clause 8.1.7 where the CC protocol is defined. Clause 8.1.7.2 defines the CCM Generation Process.

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information it receives. If RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.

Proactive DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process.

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process.

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process.

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input ports (X, Y, Z).
Proactive SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process.

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SLR Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SLR generation process.
SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Defects

None.
Consequent Actions

None.

Defect correlations

None.

Performance Monitoring
None.
20. Update clause 9.2.1.2 for DM
Change or add the text in RED:
9.2.1.2
ETHx Flow Termination sink function (ETHx_FT_Sk)

The ETHx_FT_Sk Process diagram is shown in Figure 9-16.

Symbol

[image: image43.emf]ETHx_FT

ETH_AP

ETH_FP

ETH_MPETH_RP

Figure 9-16 – ETHx_FT_Sk symbol

Interfaces

Table 9-4 – ETHx_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_RP:

ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(
N_TF,N_LF,F_TF,F_LF)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_CC_Enable
ETHx_FT_Sk_MI_LM_Enable
ETHx_FT_Sk_MI_1Second
ETHx_FT_Sk_MI_LM_DEGM
ETHx_FT_Sk_MI_LM_M
ETHx_FT_Sk_MI_LM_DEGTHR
ETHx_FT_Sk_MI_LM_TFMIN
ETHx_FT_Sk_MI_MEL
ETHx_FT_Sk_MI_MEG_ID
ETHx_FT_Sk_MI_PeerMEP_ID[i]
ETHx_FT_Sk_MI_CC_Period
ETHx_FT_Sk_MI_CC_Pri
ETHx_FT_Sk_MI_GetSvdCCM
ETHx_FT_Sk_MI_1DM_Enable
ETHx_FT_Sk_MI_1DM_MAC_SA
ETHx_FT_Sk_MI_1DM_Test_ID

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(SA,TxTimeStampf, RxTimeStampf,TxTimeStampb,LocalTime)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(MEP_ID,Test ID,TxFCf, TxFCb)
ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_cLOC[i]
ETHx_FT_Sk_MI_cUNL
ETHx_FT_Sk_MI_cMMG
ETHx_FT_Sk_MI_cUNM
ETHx_FT_Sk_MI_cDEG
ETHx_FT_Sk_MI_cUNP
ETHx_FT_Sk_MI_cUNPr
ETHx_FT_Sk_MI_cRDI
ETHx_FT_Sk_MI_cSSF
ETHx_FT_Sk_MI_cLCK
ETHx_FT_Sk_MI_pN_TF
ETHx_FT_Sk_MI_pN_LF
ETHx_FT_Sk_MI_pF_TF
ETHx_FT_Sk_MI_pF_LF
ETHx_FT_Sk_MI_pF_DS
ETHx_FT_Sk_MI_pN_DS
ETHx_FT_Sk_MI_pB_FD
ETHx_FT_Sk_MI_pB_FDV
ETHx_FT_Sk_MI_pF_FD
ETHx_FT_Sk_MI_pF_FDV
ETHx_FT_Sk_MI_pN_FD
ETHx_FT_Sk_MI_pN_FDV
ETHx_FT_Sk_MI_SvdCCM

Processes

 [image: image44.emf]Block

Consequent

Action

aBlk

aTSF

aTSDaAIS

RI_CC_RDI

RxFCl

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

ETH_AI_D/P/DE

D

P

D

E

ETH_AI_TSF / TSD / AIS

RI_CC_RxFCl

RI_CC_TxFCf

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

CCM Reception

Defect Generation

MI_CC_Period

MI_CC_Pri

MI_CC_Period

MI_CC_Pri

LMp

C

I

_

S

S

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

TxFCf

RxFCb

TxFCb

R

D

I

[

i

]

R

D

I

[

i

]

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

MI_LM_Enable

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCMMI_Get_SvdCCM

MI_SvdCCMMI_SvdCCM

Data

DataOAM

RI_CC_Blk

A

I

S

MI_CC_Enable

MI_CC_

Enable

Block

Consequent

Action

aBlk

aTSF

aTSDaAIS

RI_CC_RDI

RxFCl

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

ETH_AI_D/P/DE

D

P

D

E

ETH_CI_D/P/DEETH_CI_SSFETH_CI_D/P/DEETH_CI_SSF

ETH_AI_TSF / TSD / AIS

RI_CC_RxFCl

RI_CC_TxFCf

M

E

P

P

r

o

a

c

t

i

v

e

-

O

A

M

e

x

t

r

a

c

t

i

o

n

MI_MEL

M

E

P

P

r

o

a

c

t

i

v

e

-

O

A

M

e

x

t

r

a

c

t

i

o

n

MI_MEL

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

CCM Reception

Defect Generation

MI_CC_Period

MI_CC_Pri

MI_CC_Period

MI_CC_Pri

LMp

C

I

_

S

S

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

TxFCf

RxFCb

TxFCb

R

D

I

[

i

]

R

D

I

[

i

]

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

dRDI[1]

aTSF

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

MI_LM_Enable

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

D

DE

P

A

I

S

D

DE

P

A

I

S

DP

D

E

D

DE

P

C

C

M

data

DP

D

E

D

DE

P

C

C

M

D

DE

P

C

C

M

data

DP

D

E

D

DE

P

C

C

M

D

DE

P

C

C

M

data

DP

D

E

D

DE

P

C

C

M

D

DE

P

C

C

M

data

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCMMI_Get_SvdCCM

MI_SvdCCMMI_SvdCCM

Data

DataOAM

RI_CC_Blk

LCK

Reception

P

L

C

K

D

DE

LCK

A

I

S

MI_CC_Enable

MI_CC_

Enable

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSF

dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDI

MI_cLCK

MI_cSSF

MI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSFCI_SSF

dDEG[1]dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDIMI_cRDI

MI_cLCK

MI_cSSF

MI_cDEGMI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPrMI_cUNPr

MI_CC_Enable

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSFCI_SSF

dDEG[1]dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDIMI_cRDI

MI_cLCK

MI_cSSF

MI_cDEGMI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPr

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

dLOC[i]

dUNL

dMMG

dUNM

CI_SSFCI_SSF

dDEG[1]dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDIMI_cRDI

MI_cLCK

MI_cSSF

MI_cDEGMI_cDEG

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_cUNP

MI_cUNPrMI_cUNPr

MI_cUNP

MI_cUNPrMI_cUNPr

MI_CC_Enable

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

D

E

G

[

1

]

d

D

E

G

[

1

]

d

U

N

M

d

U

N

M

d

R

D

I

[

i

]

[

i

]

d

A

I

S

d

L

C

K

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

D

E

G

[

1

]

d

D

E

G

[

1

]

d

U

N

M

d

U

N

M

d

R

D

I

[

i

]

[

i

]

d

A

I

S

d

L

C

K

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

MI_LM_TFMIN

AIS

Reception

DE

P

DE

P

DMM

Reception

DE

P

DE

P

DMR

Reception

DE

P

DE

P

1DM

Reception

DMM

DMR

D

RI_DMR

D

D

Proactive

1DM

Control_Sk

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF_TF

MI_pF_LF

MI_pN_DS

MI_pF_DS

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF_TF

MI_pF_LF

MI_pN_DS

MI_pF_DS

MI_pB_FD

MI_pB_FDV

MI_pF_FD

MI_pF_FDV

MI_pN_FD

MI_pN_FDV

1DM

MI_1DM_MAC_SA

MI_1DM_Enable

RI_DMM

RI_DMM

RI_DMR

RI_DM_Result

1DM_Result

1DM_Result

RI_DM_Result

DE

P

DE

P

SLM

Reception

DE

P

DE

P

SLR

Reception

SLM

SLR

D

D

RI_SLM

RI_SL_Result

RI_SLM

RI_SLR

RI_SL_Result

MI_1DM_Test_ID

X

Y

Z

1DM

Dmux

X

Y

Z

1DM

Dmux

X

Y

Z

DMR

Dmux

X

Y

Z

DMR

Dmux

RI_SLR

X

Y

Z

SLR

Dmux

X

Y

Z

SLR

Dmux

Figure 9-17 – ETHx_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <CCM>: extract ETH-CCM OAM traffic unit and forward to CCM Port
 case <AIS>: extract ETH-AIS OAM traffic unit and forward to AIS Port
 case <LCK>: extract ETH-LCK OAM traffic unit and forward to LCK Port
 case <DMM>: extract ETH-DMM OAM traffic unit and forward to DMM Port
 case <DMR>: extract ETH-DMR OAM traffic unit and forward to DMR Port
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port

 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLM port

elseif (TYPE=<ETH0AM>) and (MEL<MI_MEL) and (OPC=CCM) then
 extract ETH-CCM OAM traffic unit and forward to CCM Port
else

forward ETH CI traffic unit to Data Port

endif
ETH_AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP Extraction Process.

ETH_LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM MEP Extraction Process.

DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process.

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process.

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process.

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process.
SLM Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLR Reception:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.

SLR Demux:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Block process:

When aBlk is raised, the Block process will discard all ETH_CI information it receives. If aBLK is cleared, the received ETH_CI information will be passed to the output port.

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.

CCM Reception process:

This process is defined in clause 8.1.7.3.

Defects

This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS, dLCK.
Consequent actions

aBLK

(
(dUNL or dMMG or dUNM)

Note that dUNP and dUNPr does not contribute to aBLK, because a mismatch of periodicity is not considered to be a security issue.

aTSF

(
(dLOC[1..n] and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF

aTSD

(
dDEG[1] and (not aTSF)
aAIS

(
aTSF

aRDI

(
aTSF
Defect correlations

cLOC[i]
(
dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)

cUNL

(
dUNL

cMMG

(
dMMG
cUNM

(
dUNM
cDEG[1]
(
dDEG[1] and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n] or dUNL or dMMG or dUNM)) and (MI_CC_Enable))

cUNP

(
dUNP
cUNPr

(
dUNPr
cRDI

(
(dRDI[1..n]) and (MI_CC_Enable)

cSSF

(
CI_SSF or dAIS

cLCK

(
dLCK and (not dAIS)

Performance monitoring

pN_TF

(
N_TF

pN_LF

(
N_LF

pF_TF

(
F_TF

pF_LF

(
F_LF

pN_DS

(
aTSF

pF_DS

(
aRDI[1]

nB_FD

(
B_FD
nB_FDV
(
B_FDV
nF_FD

(
F_FD
nF_FDV
(
F_FDV
nN_FD

(
N_FD
nN_FDV
(
N_FDV
NOTE- A detail calculation formula for FDV is for further study.
21. Update Figure 9-x+1 in clause 9.2.2.1 for technical clarification
Change or add the text in RED:
Processes

 [image: image45.emf]M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

D

DE

P

DPDE

ETH_CI_D/P/DE

DPDE

O

A

M

Data

Block

ETH_AI_D/P/DEETH_AI_D/P/DE

M

E

P

P

r

o

A

c

t

i

v

e

-

O

A

M

I

n

s

e

r

t

i

o

n

D

DE

P

DPDE

ETH_CI_D/P/DE

DPDE

O

A

M

Data

Block

ETH_AI_D/P/DEETH_AI_D/P/DE

RI_CC_RxFCl

RI_CC_TxFCf

RI_CC_RDI

RI_CC_RxFClRI_CC_RxFCl

RI_CC_TxFCfRI_CC_TxFCf

RI_CC_RDIRI_CC_RDI

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_LM_Enable

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_LM_Enable

RI_CC_BlkRI_CC_Blk

MI_MEP_MAC

RI_CC_RxFClRI_CC_RxFCl

RI_CC_TxFCfRI_CC_TxFCf

RI_CC_RDIRI_CC_RDI

RI_CC_RxFClRI_CC_RxFCl

RI_CC_TxFCfRI_CC_TxFCf

RI_CC_RDIRI_CC_RDI

MI_MEL

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_LM_Enable

MI_CC_

Pri

MI_CC_Enable

MI_CC_

Period

MI_MEG_ID

MI_MEP_ID

MI_LM_Enable

RI_CC_BlkRI_CC_Blk

MI_MEP_MAC

ETH_AI_D/P/DEETH_AI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

CCM Generation

DataOAM

CCM Generation

OAM

DataDataData

Data

DataDataData

Data

DataDataDataData

Data

DataData

Data

Data

DataData

Data

Data

DataDataData

Data

Data

DataData

Data

Data

DataData

Data

Data

DataDataData

Data

Data

Figure 9-x+1 – ETHG_FT_So Process
MEP ProActive-OAM Insertion process:

This process inserts the OAM Traffic Units in the stream of ETH_CI, sets the MEL field to MI_MEL and sets the SA field to MI_MEP_MAC. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs. The detail of the OAM Insertion Behaviour is described in clause 9.2.1.1.
22. Update Figure 9-x+3 in clause 9.2.2.2 for technical clarification
Change or add the text in RED:
Interfaces

[image: image46.emf]MI_MELMI_MEL

MI_CC_Period

MI_CC_Pri

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCM

MI_SvdCCM

MI_CC_Period

MI_CC_Pri

MI_CC_Period

MI_CC_Pri

MI_MEG_ID

MI_PeerMEP_ID[]

MI_Get_SvdCCMMI_Get_SvdCCM

MI_SvdCCMMI_SvdCCM

Block

Consequent

Action

aBlk

aTSF

aTSDaAIS

RI_CC_RDI

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

d

U

N

M

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

d

R

D

I

[

i

]

d

A

I

S

d

L

C

K

C

I

_

S

S

F

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_TSF / TSD / AIS

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

RI_CC_Blk

MI_CC_Enable

MI_CC_Enable

AIS

Reception

LCK

Reception

P

e

r

f

o

r

m

a

n

c

e

M

o

n

i

t

o

r

i

n

g

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

RxFCl

dRDI

[

1]

aTSF

MI_1Second

MI_pN_TF

MI_pN_LF

MI_pF_TF

MI_pF_LF

dLOC[i]

dUNL

dMMG

dUNM

CI_SSFCI_SSF

dDEG[1]dDEG[1]

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cLOC[i]

MI_cUNL

MI_cMMG

MI_cUNM

MI_cRDIMI_cRDI

MI_cLCK

MI_cSSF

MI_cDEGMI_cDEG

M

E

P

P

r

o

a

c

t

i

v

e

-

O

A

M

e

x

t

r

a

c

t

i

o

n

D

DE

P

D

DE

P

ETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_SSF

RI_CC_RxFCl

RI_CC_TxFCf

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

P

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

G

u

n

e

x

p

M

E

L

u

n

e

x

p

M

E

L

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

e

r

i

o

d

u

n

e

x

p

P

r

i

o

r

i

t

y

u

n

e

x

p

P

r

i

o

r

i

t

y

CCM Reception

Defect Generation

LMp

d

L

O

C

[

i

]

d

U

N

L

d

M

M

G

C

I

_

S

S

F

d

D

E

G

[

1

]

d

D

E

G

[

1

]

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

n

N

_

T

F

n

N

_

L

F

n

F

_

T

F

n

F

_

L

F

TxFCf

RxFCb

TxFCb

R

D

I

[

i

]

R

D

I

[

i

]

d

U

N

M

d

U

N

M

d

R

D

I

[

i

]

[

i

]

d

A

I

S

d

L

C

K

d

U

N

P

r

d

U

N

P

d

U

N

P

r

d

U

N

P

dUNP

dRDI[i]

dAIS

dLCK

dUNPr

MI_pN_DS

MI_pF_DS

MI_LM_Enable

e

x

p

CCM

[

i

]

e

x

p

CCM

[

i

]

D

DE

P

C

C

M

D

DE

P

C

C

M

L

C

K

A

I

S

data

MI_LM_DEGM

MI_LM_M

MI_LM_DEGTHR

OAM

MI_cUNP

MI_cUNPr

MI_cUNP

MI_cUNPrMI_cUNPr

L

C

K

A

I

S

MI_CC_Enable

MI_MELMI_MEL

D

P

D

E

DP

D

E

Data

Data

D

P

D

E

DP

D

E

DataData

Data

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DE

ETH_CI_D/P/DEETH_CI_D/P/DE

MI_LM_TFMIN

D

P

D

E

DP

D

E

DataData

Data

D

P

D

E

DP

D

E

DataData

Data

Figure 9-x+3 – ETHG_FT_Sk Process

MEP Proactive-OAM Extraction process:
The MEP Proactive-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHx_FT_Sk process from the stream of Traffic Units. This process resides only in the lowest number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs (AIS Reception, LCK Reception, LMp, and Defect Generation processes as well). The detail of this process is described in clause 9.2.1.2.
23. Update clause 9.3.2.1 for CSF
Change or add the text in RED:
9.3.2.1
ETH to ETH adaptation source function (ETHx/ETH_A_So)

This function maps client ETH_CI traffic units into server ETH_AI traffic units.

Symbol
[image: image47.emf]ETH/ETH

ETH_FP

ETH_AP

ETH/ETH_A_So_MP

Figure 9-18 – ETHx/ETH_A_So symbol
Interfaces

Table 9-5 – ETHx/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETHx/ETH_A_So_MP:
ETHx/ETH_A_So_MI_Active
ETHx/ETH_A_So_MI_MEP_MAC
ETHx/ETH_A_So_MI_Client_MEL
ETHx/ETH_A_So_MI_LCK_Period
ETHx/ETH_A_So_MI_LCK_Pri
ETHx/ETH_A_So_MI_Admin_State
ETHx/ETH_A_So_MI_MEL
ETHx/ETH_A_So_MI_APS_Pri
ETHx/ETH_A_So_MI_CSF_Enable
ETHx/ETH_A_So_MI_CSFrdifdiEnable
	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

Processes

 [image: image48.emf]ETH_CI_P/DE/D

Selector

LCK

Generate

MI_Admin_State

OAM MEL

Filter

ETH_CI_APS

NormalLock

MI_LCK_Period

MI_Client_MEL

MI_LCK_Pri

MI_APS_Pri

APS Insert

MI_MEL

P

D

E

DP

D

E

D

ETH_AI_P/DE/D

MI_MEP_MAC

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

MI_CSF_Period

CSF Insert

P

D

E

DP

D

E

D

MI_CSF_Pri

ETH_CI_SSF

MI_CSF_Enable

MI_CSFrdifdiEnable

Consequent

Actions

Consequent

Actions

aCSF-RDI

aCSF-FDI

aCSF-LOS

Figure 9-19 – ETHx/ETH_A_So process
LCK Generate Process:

As defined in clause 8.1.2.

Selector Process:

As defined in clause 8.1.3.

OAM MEL FilterProcess:

As defined in clause 8.1.1.

APS Insert Process:

As defined in clause 8.1.5.

When this process is activated, LCK admin state shall be unlocked. See clause 7.5.2.2 of [ITU-T G.8010].
Defects

None.

Consequent Actions
aCSF-LOS (CI_SSF and MI_CSFEnable
aCSF-RDI (CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI (CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable
Defect correlations

None.

24. Update clause 9.3.2.2 for CSF
Change or add the text in RED:
9.3.2.2
ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)

This function retrieves client ETH_CI traffic units from server ETH_AI traffic units.

Symbol

[image: image49.emf]ETH/ETH

ETH_FP

ETH_AP

ETH/ETH_A_Sk_MP

Figure 9-20 – ETHx/ETH_A_Sk symbol
Interfaces

Table 9-6 – ETHx/ETH_A_Sk interfaces
	Inputs
	Outputs

	ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_Active
ETHx/ETH_A_Sk_MI_MEP_MAC
ETHx/ETH_A_Sk_MI_Client_MEL
ETHx/ETH_A_Sk_MI_LCK_Period
ETHx/ETH_A_Sk_MI_LCK_Pri
ETHx/ETH_A_Sk_MI_Admin_State
ETHx/ETH_A_Sk_MI_AIS_Period
ETHx/ETH_A_Sk_MI_AIS_Pri
ETHx/ETH_A_Sk_MI_MEL
ETHx/ETH_A_Sk_MI_CSF_Reported
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_SSD
ETHx/ETH_A_Sk_MP:
ETHx/ETH_A_Sk_MI_cCSF

Processes

[image: image50.emf]APS

Extract

Selector

AIS Insert

MI_MEL

OAM MEL

Filter

MI_Admin_State

ETH_AI_P/DE/D

ETH_CI_P/DE/DETH_CI_APS

NormalLock

MI_LCK_Period

MI_Client_MELMI_Client_MEL

MI_LCK_Pri

MI_AIS_Pri

MI_AIS_Period

Consequent

Actions

aAIS

ETH_CI_SSF

aSSF

ETH_AI_TSF/AIS/SSD

ETH_CI_SSD

MI_MEP_MAC

LCK

Generate

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

P

D

E

DP

D

E

D

CSF

Extract

P

D

E

DP

D

E

D

MI_CSFrdifdiEnable

MI_CSF_Reported

Defect

Correlations

AI_TSF

dCSF

AI_AIS

AI_TSF

MI_cCSF

Defect

Generation

Figure 9-21 – ETHx/ETH_A_Sk process
APS Extract process:

As defined in clause 8.1.6.

OAM MEL Filter process:

As defined in clause 8.1.1.

AIS Insert process:

As defined in clause 8.1.4.

LCK Generate process:

As defined in clause 8.1.2.

Selector process
:

As defined in clause 8.1.3.

Defects
dCSF-LOS – See clause 6.1.5.4.

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.

Consequent Actions
aSSF ((AI_TSF or dCSF-LOS) and (not MI_Admin_State == Locked)

aSSFrdi

(
dCSF-RDI and MI_CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and MI_CSFrdifdiEnable

aAIS (AI_AIS

Defect correlations

cCSF
(
(dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported
Performance Monitoring
None.

25. Update clause 9.3.3.2 for VID filtering
Change or add the text in RED:
9.3.3.2
ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)

VID Demux Process
:

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X, Y, Z in Figure 9-27). The VID signal determines the port to be selected, based on the MI_Vlan_Config input parameter.

The MI_Vlan_Config parameter specifies the possible VID values for the ports to be used. If there is no port assigned to a specific VID value, and this VID value is used, the VID Demux process will filter the incoming signal set.

Disabling the Ingres VID Filtering is modelled by setting MI_Vlan_Config [1…4094]. Refer to Appendix VIII.

26. Update clause 9.4.1 for DM and others
Change or add the text in RED:
9.4.1
ETH Diagnostic Flow Termination Functions for MEPs (ETHDe_FT)

The bidirectional ETHDe Flow Termination (ETHDe_FT) function is performed by a co-located pair of ETHDe flow termination source (ETHDe_FT_So) and sink (ETHDe_FT_Sk) functions.
9.4.1.1
ETH Diagnostic Flow Termination Source Function for MEPs (ETHDe_FT_So)

The ETHDe_FT_So Process diagram is shown in Figure 9-32.

Symbol

[image: image51.emf]ETHDe

ETHDe_AP

ETHDe_FP

ETHDe_MPETHDe_RP

Figure 9-32 – ETHDe_FT_So symbol

Interfaces

Table 9-11 – ETHDe_FT_So interfaces

	Inputs
	Outputs

	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:
ETH_RI_LMM(D,P,DE)

ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

ETH_RI_LBM(D,P,DE)

ETH_RI_LBR(SA,rTLV,TID)

ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(rSA,TxTimeStampf,RxTimeStampf,
TxTimeStampb,RxTimeb, rTestID)

ETH_RI_LTM(D,P,DE)

ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)

ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)
ETHDe_FT_So_MP:
ETHDe_FT_So_MI_LM_Start(DA,P,Period)

ETHDe_FT_So_MI_LM_Terminate

ETHDe_FT_So_MI_LB_Discover(P)

ETHDe_FT_So_MI_LB_Series(DA,DE,P,N, Length, Period)

ETHDe_FT_So_MI_LB_Test
(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_LB_Test_Terminate

ETHDe_FT_So_MI_DM_Start(DA,P,TestID,Length,Period)

ETHDe_FT_So_MI_DM_Terminate

ETHDe_FT_So_MI_1DM_Start(DA,P, TestID,Length,Period)

ETHDe_FT_So_MI_1DM_Terminate

ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)

ETHDe_FT_So_MI_TST_Terminate

ETHDe_FT_So_MI_LT(TA,TTL.P)

ETHDe_FT_So_MI_MEP_MAC

ETHDe_FT_So_MI_MEL

ETHDe_FT_So_MI_MEP_ID
ETHDe_FT_So_MI_LM_Pri
ETHDe_FT_So_MI_SL_Start(DA,P, TestID,Length,Period)
ETHDe_FT_So_MI_SL_Terminate

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETHDe_FT_So_MP:

ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF, F_LF)

ETHDe_FT_So_MI_LB_Discover_Result(MACs)

ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)

ETHDe_FT_So_MI_LB_Test_Result
(Sent, REC, CRC, BER, OO)

ETHDe_FT_So_MI_TST_Result(Sent)

ETHDe_FT_So_MI_LT_Results(Results)

ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)

Processes [image: image52.emf]LMxGeneration

M

E

P

O

n

D

e

m

a

n

d

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

DPDE

RI_LMM(D,P,DE)

MI_MEL

LBM

Generation

LBR

Generation

D

P

DE

D

P

DE

D

P

DE

DMM

Generation

D

P

DE

D

P

DE

LTM

Generation

D

P

DE

MI_MEP_MAC

Data

L

M

M

L

B

M

L

B

R

D

M

M

D

M

R

L

T

M

D

P

DE

L

M

R

LMRLMMData

Data

LM

Control

MI_LM_Start(DA,P,Period)

MI_LM_Terminate

MI_LM_Result(N_TF, N_LF, F_TF, F_LF)

LMM(DA,P)

RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

LB

Control

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N,Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBM(D,P,DE)

MI_DM_Start(DA,P,

MI_DM_Terminate

RI_LBR(SA,

rTLV,TID

)

DMR

Generation

D

P

DE

1DM

Generation

1

D

M

D

P

DE

TST

Generation

T

S

T

MI_1DM_Start(DA,P,

MI_1DM_Terminate

LTR

Generation

D

P

DEL

T

R

RI_DMM(D,P,DE)

RI_LTM(D,P,DE)

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

MI_LM_Pri

Length,

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

LMxGeneration

M

E

P

O

n

D

e

m

a

n

d

-

O

A

M

I

n

s

e

r

t

i

o

n

ETH_AI_D/P/DE

DPDE

RI_LMM(D,P,DE)

MI_MEL

ETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DEETH_CI_D/P/DE

LBM

Generation

LBR

Generation

D

P

DE

D

P

DE

P

DE

DMM

Generation

D

P

DE

D

P

DE

LTM

Generation

D

P

DE

MI_MEP_MAC

Data

L

M

M

L

B

M

L

B

R

D

M

M

D

M

R

L

T

M

D

P

DE

L

M

R

LMRLMMData

Data

LM

Control

MI_LM_Start(DA,P,Period)

MI_LM_Terminate

MI_LM_Result(N_TF, N_LF, F_TF, F_LF)

LMM(DA,P)

RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)

LB

Control

MI_LB_Discover(P)

MI_LB_Discover_Result(MACs)

MI_LB_Series(DA,DE,P,N,Period)

MI_LB_Series_Result(REC,ERR,OO)

MI_LB_Test(DA,DE,P,Pattern, Length, Period)

MI_LB_Test_Terminate

RI_LBM(D,P,DE)

Control

On-demand

DM

Control

On-demand

DM

DMM(DA,P,0,

Test ID TLV,

TLV)

MI_DM_Start(DA,P,Test ID,Length,Period)

MI_DM_Terminate

RI_LBR(SA,

rTLV,TID

)

DMR

Generation

D

P

DE

1DM

Generation

1

D

M

D

P

DE

TST

Generation

T

S

T

MI_1DM_Start(DA,P,

MI_1DM_Terminate

1DM(DA,P,0,

Test TD TLV,

TLV)

TST(DA,P,DE,

TLV,TLD)

LTR

Generation

D

P

DEL

T

R

RI_DMM(D,P,DE)

LTM(TA,TTL,

TID,P)

RI_LTM(,P,DE)

TST

Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)

MI_TST_Terminate

MI_TST_Result(Sent)

LT

Control

MI_LT(TA,P)

MI_LT_Result(Results)

RI_LTR(SA,TTL,TID,TLV)

TTL,

TST

Control_So

MI_TST(DA,DE,P,Pattern, Length, Period)

MI_TST_Terminate

MI_TST_Result(Sent)

MI_LT(TA,P)

MI_LT_Result(Results)

RI_LTR(SA,TTL,TID,TLV)

TTL,

RI_DMR(rSA,TxTimeStampf, RxTimeStampf,

MI_LB_Test_Result(Sent,REC,CRC,BER,OO)

MI_LM_Pri

Length,

MI_DM_Result(count,B_FD[],F_FD[],N_FD[])

Test ID,Length,Period)

DMM

Z

Y

X

Mux

DMM

Z

Y

X

Mux

Control_So

On-demand

1DM

1DM

Z

Y

X

Mux

1DM

Z

Y

X

Mux

DMM

Generation

D

P

DE

D

P

DE

S

L

M

SL

R

DMR

Generation

SLM

Generation

D

P

DE

D

P

DE

M

Control

On-demand

SL

Control

On-demand

SL

SLM(DA,P,

MEP_ID,

Test_ID,

TxFCl,TLV)

SLR

Generation

MI_SL_Result(N_TF,N_LF,F_LF)

SLM

Z

Y

X

Mux

SLM

Z

Y

X

Mux

RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)

MI_SL_Start(DA,P,TestID,Length,Period)

MI_SL_Terminate

RI_SLM(OAM,P,DE,TxFCb)

TxTimeStampb,RxTimeb,rTest_ID)

Figure 9-33 – ETHDe_FT_So Process

MEP On Demand-OAM Insertion process:

The MEP On Demand OAM Insertion process inserts OAM Traffic Units that are generated in the ETHDe_FT_So process into the stream of Traffic Units.

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the MI_MEP_MAC value. In the M_SDU field, the MEL field is overwritten with the MI_MEL value.

If the DA of the OAM Traffic Unit is a Class1 or Class 2 Multicast DA the OAM insertion process updates the DA to reflect the right MEL.
This ensures that every generated OAM field has the correct SA, DA and MEL.

LB Control:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.2 defines the LB Control Process.

LBM Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.3 defines the LBM Generation Process.

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the LBR Generation Process.

LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the LM Control Process.

LMx Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the LMx Generation Process.

On-demand DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines the DMM Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines the DMR Generation Process.

On-demand 1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines the 1DM Control_So Process.

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines the 1DM Generation Process.

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,0,Test ID TLV, TLV) from the input ports (X, Y, Z).
TST Control_So:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.2 defines the TST Control Process.

TST Generation:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.3 defines the TST Generation Process.

LT Control:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.2 defines the LT Control Process.

LTM Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.3 defines the LTM Generation Process.

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines the LTR Generation Process.

On-demand SL Control:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines the SL Control process.

SLM Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines the SLM generation process.

SL Generation:
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines the SL generation process.

SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from the input ports (X, Y, Z).
Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.

9.4.1.2
ETH Diagnostic Flow Termination Sink Function for MEPs (ETHDe_FT_Sk)

The ETHDe_FT_Sk Process diagram is shown in Figure 9-34.

Symbol

[image: image53.emf]ETHDe_FT

ETHDe_AP

ETHDe_FP

ETHDe_MPETHDe_RP

Figure 9-34 – ETHDe_FT_Sk symbol

Interfaces

Table 9-12 – ETHDe_FT_Sk interfaces

	Inputs
	Outputs

	ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_Active
ETHDe_FT_Sk_MI_LM_Pri
ETHDe_FT_Sk_MI_MEL

ETHDe_FT_Sk_MI_MEP_MAC

ETHDe_FT_Sk_MI_1DM_Start(SA,Test_ID)

ETHDe_FT_Sk_MI_1DM_Terminate

ETHDe_FT_Sk_MI_TST_Start(SA,Pattern)

ETHDe_FT_Sk_MI_TST_Terminate
	ETH_AP:

ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH _RP:

ETH_RI_LMM(D,P,DE)

ETH_RI_LMR(TxFCf,RxFCb,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)

ETH_RI_DMR(
SA,TxTimestampf,RxTimeStampf,
TxTimeStampb,RxTimeb,TestID)
ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)

ETH_RI_SLM(OAM,P,DE,TestID)
ETH_RI_SLR(
 MEP_ID,Test_ID,TxFCf,TxFCb)

ETHDe_FT_Sk_MP:
ETHDe_FT_Sk_MI_1DM_Result(
 count,N_FD[])
ETHDe_FT_Sk_MI_TST_Result(
 REC,CRC,BER,OO)

Processes

 [image: image54.emf]LMxReception

M

E

P

O

n

d

e

m

a

n

d

-

O

A

M

E

x

t

r

a

c

t

i

o

n

D

PDE

MI_MEL

ETH_CI_D/P/DEETH_CI_D/P/DE

MEP LBM

Reception

LBR Reception

D

P

DE

D

P

DE

D

P

DE

DMM Reception

D

P

DE

DMR Reception

D

P

DE

D

P

DE

TST Reception

D

P

DE

Reception

D

P

DE

D

P

DE

ETH_AI_D/P/DE

L

M

M

L

M

R

L

M

M

L

B

M

L

B

R

D

M

M

D

M

R

1

D

M

T

S

T

L

T

M

L

T

R

L

M

R

D

P

DE

LMM

LMR

MI_LM_Pri

Data

Data

1DM Reception

RI_LBM(D,P,DE)

RI_LBR(SA,rTLV,TID)

RI_DMM(D,P,DE)

RI_DMR(rSA,TxTimeStampf,

RI_LMM(D,P,DE)

RI_LMR(

RxFCl

TxFCf,

RxFCb,

TxFCb,

)

TST

Control_Sk

MI_TST_Start(SA,pattern)

MI_TST_Terminate

MI_TST_Result(REC,CRC,BER,OO)

TST

Control_Sk

MI_TST_Start(SA,pattern)

MI_TST_Terminate

MI_TST_Result(REC,CRC,BER,OO)

Data

RI_LTR(SA,TTL,TID,TLV)

RI_LTM(D,P,DE)

RxTimeStampf,TxTimeStampb,

MI_MEP_MAC

MEP LTM

LTR Reception

1DM

Control_Sk

MI_1DM_Result(count, N_FD[])

MI_1DM_Start(SA,Test_ID)

MI_1DM_Terminate

X

Y

Z

1DM

Dmux

X

Y

Z

1DM

Dmux

X

Y

Z

DMR

Dmux

SLM Reception

D

P

DE

SLR Reception

D

P

DE

SLM

SLR

RI_SLR(rMEP_ID,rTest_ID,

TxFCf, TxFCb)

X

Y

Z

SLR

Dmux

RI_SLM(OAM,P,DE,TxFCb)

RxTimeb,rTest_ID)

Figure 9-35 – ETHDe_FT_Sk processes

MEP On Demand -OAM extraction process:

The MEP On Demand-OAM Extraction process extracts OAM Traffic Units that are processed in the ETHDe_FT_Sk process from the stream of Traffic Units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LMM>: extract ETH-LMM OAM traffic unit and forward to LMM Port
 case <LMR>: extract ETH-LMR OAM traffic unit and forward to LMR Port

 case <DMM>: if (Flag.Type=0) then

extract ETH-DMM OAM traffic unit and forward to DMM Port
 endif
 case <DMR>: if (Flag.Type=0) then

extract ETH-DMR OAM traffic unit and forward to DMR Port
 endif
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port

 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port

 case <LTR>: extract ETH-LTR OAM traffic unit and forward to LTR Port

 case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
 case <LBR>: extract ETH-LBR OAM traffic unit and forward to LBR Port

 case <TST>: extract ETH-TST OAM traffic unit and forward to TST Port

 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port

 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLM port
else

 forward ETH_CI_traffic unit to Data Port

endif
NOTE – If both ETHDe_FT and ETHx_FT are involved in synthetic loss measurments, the MEP On Demand-OAM Extraction process need to take a role of the discrimination which Flow Termination the received ETH-SLM PDU belongs to. Detail mechanism is for further study.

MEP LBM Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.5 defines the LBM MEPReception Process.

LBR Reception:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.7 defines the LBR Reception Process.

LMx Reception:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.4 defines the LMx Reception Process.

DMM Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.4 defines the DMM Reception Process.

DMR Reception:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.6 defines the DMR Reception Process.

DMR Demux:

The DMR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Reception:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.4 defines the 1DM Reception Process.

1DM Demux:

The 1DM Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
1DM Control_Sk:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.5 defines the 1DM Control_Sk Process.

TST Reception:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.4 defines the TST Reception Process.

TST Control_Sk:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.5 defines the TST Control_Sk Process.

MEP LTM Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.5 defines the MEP LTM Reception Process.

LTR Reception:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.7 defines the LTR Reception Process.

SLM Reception
This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.4 defines the SLM reception process.

SLRReception

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.6 defines the SLR reception process.

SLR Demux
:

The SLR Demux Process deinterleaves the incoming signal set (D,P,DE) to the different output ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.
Defects

None.
Consequent actions

None.
Defect correlations

None.
Performance monitoring
None.

27. Update clause 9.6.2.2 for TCS
Change or add the text in RED:
9.6.2.2
ETH Group Traffic Conditioning Function (ETH_GTCS_Sk)

For ETH Group Traffic, traffic conditioning process is performed per flow point but there is no correlation between each process. Threfore, an ETH_GTCS_Sk function can be modelled by multiple ETH_TCS_Sk functions and no specific function is defined in this recommendation.
28. Update clause 10.3 for ETYn/ETH-m adaptation
Change or add the text in RED:
Figures 10-3 and 10-4 illustrate the Ethernet trail termination to ETH adaptation function (ETYn/ETH_A and ETYn/ETH-m_A). Information crossing the ETH flow point (ETH_FP) and ETH termination flow point (ETH_TFP) is referred to as ETH characteristic information (ETH_CI). Information crossing the ETYn access point (ETY_AP) is referred to as ETYn adapted information (ETYn_AI). Note that ETYn/ETH-m_A is a compound function of ETYn/ETH_A and ETHx/ETH-m_A (see clause 9.3.3).
29. Update clause 10.4 for ETY3/ETC3
Change or add the text in RED:
10.4
1000BASE-(SX/LX/CX) ETY to Coding sub-layer Adaptation functions (ETY3/ETC3_A)

This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from / to GMII data octets. The combination of ETY3_TT and ETY3/ETC3_A represents the functions up to and including the PCS sublayer in the 802.3 model. The GMII data octets may be extracted from or mapped into GFP-T frames, per clause 11.2 SDH to ETC Adaptation functions (Sn-X/ETC3_A). It may also be extracted from and mapped into ODU0, per 14.3.7.1/G.798 (ODU0P/CBRx_A). In the latter case, the ETC3_CP from the ETY3/ETC3_A function is bound to the CBRx_CP of the ODU0P/CBRx_A function.
30. Move clause 11.5.4 to a new clause 10.7 for ETH PP-OS
10.7 ETY4 to Ethernet PP-OS adaptation functions (ETY4/ETHPP-OS_A)

The ETY4 to Ethernet PP-OS adaptation function supports transporting preamble and ordered set information of the 10GBASE-R signals over enhanced OPU2 payload area.

It adapts 10GBASE-R signals from/to data frames which include the preamble and start-of-frame delimiter and ordered sets from the inter-frame gap into ETHPP-OS_CI for subsequent mapping into an OPU2 with extended payload area as described in clause 11.5.3.

Note that there is no Ethernet MAC termination function. Consequently, since no error checking is performed on the Ethernet MAC frames, errored MAC frames are forwarded in both ingress and egress directions.
10.7.1
ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)

Symbol

[image: image55.emf]ETY4/ETHPP-OS_A_So

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_So_MI

Figure 10-x – ETY4/ETHPP-OS_A_So symbol

Interfaces

Table 10-x – ETY4/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF
ETY4/ETHPP-OS_A_So_MP:
ETY4/ETHPP-OS_A_So_MI_Active
	ETY4_AP:
ETY4_AI_Data
ETY4_AI_ClocK
ETY4_AI_SSF

NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes

A process diagram of this function is shown in Figure 10-x+1.

 [image: image56.emf]ETY4 Server-specific

processes

ETY4_AI

ETHPP-OS_CI_D

Figure 10-x+1 – ETY4/ETHPP-OS_A_So process diagram

Activation: The ETY4/ETHPP-OS_A_So function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall not access the ETY4 access point.

ETY4 Server-specific processes: None.

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_So function.

Defects

None.

Consequent actions None.
Defect correlations

None.

Performance monitoring
For further study.

10.7.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)

Symbol

[image: image57.emf]ETY4/ETHPP-OS_A_Sk

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_Sk_MI

Figure 10-x+2 – ETY4/ETHPP-OS_A_Sk symbol

Interfaces

Table 10-x+1 – ETY4/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ETY4_AP:
ETY4_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF
ETY4/ETHPP-OS_A_Sk_MP:
ETY4/ETHPP-OS_A_Sk_MI_Active
	ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

Processes

A process diagram of this function is shown in Figure 10-x.

 [image: image58.emf]ETY4 Server-specific

processes

ETY4_AI

ETHPP-OS_CI_DETHPP-OS_CI_SSF

Figure 10-x+3 – ETY4/ETHPP-OS_A_Sk process diagram

Activation: The ETY4/ETHPP-OS_A_Sk function shall access the ETY4 access point and perform the processes specified below when it is activated (MI_Active is true). Otherwise, it shall activate the SSF signal and not report its status via the management point.

ETY4 Server-specific processes: None

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation by the ETYn_TT_Sk function.

Defects

None.

Consequent actions

aSSF (AI_TSF

Note that the replacement signal is generated in the subsequent adaptation source function ODU2P/ETHPP-OS_A_So.

Defect correlations

None.

Performance monitoring
For further study.
31. Update clause 11.1.1.2 for aSSFfdi
Change or add the text in RED:
11.1.1.2
VC-n to ETH adaptation sink function (Sn/ETH_A_Sk)

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

32. Update clause 11.1.2.2 for aSSFfdi
Change or add the text in RED:
11.1.2.2
LCAS-capable VC-n-Xv to ETH adaptation sink function (Sn-X-L/ETH_A_Sk)

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

33. Update clause 11.1.3.2 for aSSFfdi
Change or add the text in RED:
11.1.3.2
VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

34. Update clause 11.1.4.2 for aSSFfdi
Change or add the text in RED:
11.1.4.2
LCAS-capable VC-m-Xv to ETH adaptation sink function (Sm-X-L/ETH_A_Sk)

Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

35. Update clause 11.2.1 for VC-n Adaptaiton
Change or add the text in RED:
11.2.1
VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)

This function maps ETC_CI information from an ETC3 onto an Sn-X_AI signal (n=3, 4). This mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.

Data at the Sn-X_AP is a VC-n-Xv, having a payload as described in [ITU-T G.707], but with indeterminate POH bytes: J1, B3, G1.

Symbol

[image: image59.emf]ETC3_CI

Sn-X_AI

Sn-X/ETC3_A_So

From

ETC3_TCP

S4-X/ETC3_A_So_MI

S4-X_TI

Figure 11-15 – Sn-X/ETC3_A_So symbol

Interfaces

Table 11-9: Sn-X/ETC3_A_So interfaces

	Inputs
	Outputs

	ETC3_TCP:
 ETC3_CI_Data_Control
 ETC3_CI_Clock
 ETC3_CI_Control_Ind
 ETC3_CI_SSF

Sn-X_TP:
 Sn-X _TI_Clock
 Sn-X _TI_FrameStart

Sn-X / ETC3_A_So_MP:
Sn-X/ETC3_A_So_MI_Active
 Sn-X / ETC3_A_So_MI_CSFEnable

	Sn-X _AP:
 Sn-X _AI_Data
 Sn-X _AI_Clock
 Sn-X _AI_FrameStart

Processes

A process diagram of this function is shown in Figure 11-16.

[image: image60.emf]processes

GFP_Frame

GFP_FS

CMuxConfig

CmuxActive

=

false

X specific

GFP-T processes

Sn-X_AI_D

Sn-X_TI_FS

Sn-X_TI_CK

Common

GFP-T processes

GFP_Frame

GFP_FS

ETC3 specific

GFP-T processes

FCSenable=false

(From ETC3_TCP)

MI_FCSFenable

ETC3_CI_SSF

Sn-X_AI_CKSn-X_AI_FS

Sn-X_AI_DSn-X_AI_CKSn-X_AI_

X specific

ETC3_CI_Data_Control

ETC3_CI_Clock

ETC3_CI_Control_Ind

VC-n-

VC-n4-

FS

Figure 11-16 – Sn-X/ETC3_A_So process

Ethernet specific GFP-T source process:

See clause 8.5.4.2.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Transparent Gb Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet codeword information is inserted into the client payload information field of the GFP-T frames according to clause 8 of [ITU-T G.7041]. 65B rate adaptation is enabled (RAdisable=false).
NOTE - Equipment designed prior to this Amendment may not support configuration of RAdisable; in such equipment the use of 65B rate adaptation is implicitly enabled.
Response to ETC3_CI_SSF is according to the principles in clauses 8.3 and 8.3.4 of [ITU-T G.7041] and Appendix VIII of [ITU-T G.806]. Details are ffs.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

VC-n-X specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n-X (n=3,4) payload area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for “GFP mapping” in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

NOTE – For Sn-X/ETC3_A_So, the H4, K3, F2, and F3 bytes are undefined at the Sn-X_AP output of this function (as per clause 12 of [ITU-T G.783]).
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable

Defect correlations

None.

Performance monitoring
For further study.
36. Update clause 11.4.1.2 for aSSFfdi
Change or add the text in RED:
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

37. Update clause 11.4.2.2 for aSSFfdi
Change or add the text in RED:
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 3 – XAR=0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

38. Update clause 11.5.1 for ODU Adaptaiton
Change or add the text in RED:
11.5.1
ODUk to ETH adaptation functions (ODUkP/ETH_A; k = 0, 1, 2, 3, 4, flex)

11.5.1.1
ODUk to ETH adaptation source function (ODUkP/ETH_A_So)

The ODUkP/ETH_A_So function creates the ODUk signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk (k = 0, 1, 2, 3, 4, flex), adds OPUk Overhead (RES, PT) and default ODUk Overhead.

Symbol

[image: image61.wmf]
Figure 11-27 – ODUkP/ETH_A_So symbol

Interfaces

Table 11-15 – ODUkP/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_So_MP:

ODUkP/ETH_A_So_MI_Active

ODUkP/ETH_A_So_MI_CSFEnable
ODUkP/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_Clock
ODUkP_AI_FrameStart

ODUkP_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-28.

[image: image62.emf]

ODUkP specific

processes

GFP_Frame

GFP_FS

CMuxConfig

CmuxActive=false

ODUkP_AI_D

ODUkP specific

GFP-F processes

ODUkP_AI_CK/FS

Common

GFP-F processes

GFP_Frame

GFP_FS

ETH specific

GFP-F processes

FCSenable=false

ETH_Frame

Queueing

ETH_CI_D

(ETH_TFP)

802.3 MAC FCS

ETH_Frame+FCS

 ETH_PI_D

(ETHTF_PP)

Replicate

ETH_CI_D

(ETH_FP)

 ETH_PI_D

(ETHF_PP)

MI_CSFenable

ETH_CI_SSF

(ETH_FP)

ETH_RI_RSF

ODUkP_AI_D/CK/FS/MFS

MI_CSFrdifdiEnable

Figure 11-28 – ODUkP/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODUkP specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific source process:

[image: image63.wmf]AI_D

ODUk

OH is set to all

-

0

’

s,

except PM STAT = 001

ODUkP_AP

RES

CSF

PT

Free run

clock generator

(

ODCa

)

CK

1

122368

AI_CK

1

256

AI_FS

AI_MFS

FS

MFS

MI_Active

Figure 11-29 – ODUkP specific source process

Clock and (Multi)Frame Start signal generation:
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798. The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per 122 368 clock cycles. AI_MFS shall be active once every 256 frames.
PT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the PT byte position of the PSI overhead as defined in clause 15.9.2.1.1 of [ITU-T G.709].
RES: The function shall insert all-0's into the RES bytes.
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable
aCSF-OPU (CI_SSF and CSFEnable
Defect correlations

None.

Performance monitoring
For further study.
11.5.1.2
ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)

The ODUkP/ETH_A_Sk extracts ETH_CI information from the ODUkP payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image64.wmf]
Figure 11-30 – ODUkP/ETH_A_Sk symbol

Interfaces

Table 11-16 – ODUkP/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP_AP:

ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart

ODUkP_AI_MultiframeStart
ODUkP_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_Active
ODUkP/ETH_A_Sk_MI_FilterConfig
ODUkP/ETH_A_Sk_MI_CSF_Reported
ODUkP/ETH_A_Sk_MI_MAC_Length
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP/ETH_A_Sk_MP:

ODUkP/ETH_A_Sk_MI_AcPT
ODUkP/ETH_A_Sk_MI_AcEXI
ODUkP/ETH_A_Sk_MI_AcUPI
ODUkP/ETH_A_Sk_MI_cPLM
ODUkP/ETH_A_Sk_MI_cLFD
ODUkP/ETH_A_Sk_MI_cUPM
ODUkP/ETH_A_Sk_MI_cEXM
ODUkP/ETH_A_Sk_MI_cCSF
ODUkP/ETH_A_Sk_MI_pFCSErrors

Processes

A process diagram of this function is shown in Figure 11-31.

[image: image65.emf]ODUkPspecific

processes

CMuxConfig

CmuxActive=false

ODUkP_AI_D/CK/FS/MFS/TSF

ODUkPspecific

GFP-F processes

cPLM

cLFD

Common

GFP-F processes

GFP_Frame/FS/SF

ETH specific

GFP-F processes

FCSdiscard=false

ETH_Frame

Replicate

Filter

AcPT

cEXM

AcEXI

ODUkP_AI_D/CK/FS/TSF

GFP_Frame/FS/SF

cUPM

AcUPI

pFCSErrors

802.3 MAC FrmChk

ETH_Frame+FCS

ETH_CI_D

ETH_CI_SSF

(ETH_FP)

ETH_PI_D

(ETHF_PP)

MI_FilterConfig

ETH_PI_D

(ETHTF_PP)

SF

SF

ETH_CI_D

ETH_CI_SSF

(ETH_TFP)

MAC Length Chk

SF

ETH_Frame+FCS

MI_MAC_Length

MI_CSFrdifdiEnable

cCSF

Figure 11-31 – ODUkP/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODUkP specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area according to clause 17.4 of [ITU-T G.709].

ODUkP specific sink process:
[image: image66.emf]PT Process

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

s

Extract PT

Extract CSF

dCSF

dPLM

dCSF

AI_TSF

dPLM

AI_CKAI_FSAI_MFSAI_D

M

I

_

c

C

S

F

M

I

_

c

P

L

M

M

I

_

A

c

t

i

v

e

AI_TSF

M

I

_

A

c

P

T

ODUkP_AP

Figure 11-32 – ODUkP specific sink process

PT: The function shall extract the PT byte from the PSI overhead as defined in clause 8.7.1 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 15.9.2.1.1 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.

Defects

dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.
39. Update clause 11.5.2 for ODU Adaptaiton
Change or add the text in RED:
11.5.2
LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 0, 1, 2, 3, 4, flex)

11.5.2.1
LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-L/ETH_A_So)

The ODUkP-X-L/ETH_A_So function creates the ODUk-X-L signal from a free running clock. It maps the ETH_CI information into the payload of the OPUk-Xv (k = 0, 1, 2, 3, 4, flex), adds OPUk-Xv Overhead (RES, vcPT).

Symbol

[image: image67.wmf]
Figure 11-33 – ODUkP-X-L/ETH_A_So symbol

Interfaces

Table 11-17 – ODUkP-X-L/ETH_A_So interfaces

	Inputs
	Outputs

	ETH_TFP:

ETH_CI_D
ETH_CI_DE
ETH_CI_P

ETH_FP:

ETH_CI_D
ETH_CI_DE
ETH_CI_P
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L_AP:

ODUkP-X-L_AI_XAT
ODUkP-X-L/ETH_A_So_MP:

ODUkP-X-L/ETH_A_So_MI_Active
ODUkP-X-L/ETH_A_So_MI_CSFEnable
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable
	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart

ODUkP-X-L_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_DE
ETH_PI_P
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-34.

[image: image68.emf]MI_CSFrdifdiEnable

Figure 11-34 – ODUkP-X-L/ETH_A_So process

See clause 11.5.1.1 for a description of ODUkP-X-L/ETH_A processes.

ODUkP-X-L specific source process:

[image: image69.wmf]AI_D

ODUk

OH is set to all

-

0

’

s,

except PM STAT = 001

ODUkP

-

X

-

L_AP

RES

CSF

PT

Free run

clock generator

(

ODCa

)

CK

1

(X

AT

*122368)

AI_CK

1

256

AI_FS

AI_MFS

FS

MFS

MI_Active

Figure 11-35 – ODUkP-X-L specific source process

Clock and (Multi)Frame Start signal generation:
The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the minimum to maximum clock rate of the specified ODU signal as given in Table 14-2/G.798. The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the ODUk signal. The AI_FS signal shall be active once per XAT *122 368 clock cycles. AI_MFS shall be active once every 256 frames.

vcPT: The payload type information is derived directly from the Adaptation function type. The value for “GFP mapping” shall be inserted into the vcPT byte position of the PSI overhead as defined in clause 18.1.2.2 of [ITU-T G.709].

RES: The function shall insert all-0's into the RES bytes.
All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field which should be set to the value "normal path signal" (001).
Counter processes:
For Further Study.
Defects

None.

Consequent actions

aCSF-RDI (CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI (CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS (CI_SSF and CSFEnable
aCSF-OPU (CI_SSF and CSFEnable
Defect correlations

None.

Performance monitoring
For further study.
11.5.2.2
LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-L/ETH_A_Sk)

The ODUkP-X-L/ETH_A_Sk extracts ETH_CI information from the ODUkP-Xv payload area, delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk-Xv Overhead (vcPT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image70.wmf]
Figure 11-36 – ODUkP-X-L/ETH_A_Sk symbol

Interfaces

Table 11-18 – ODUkP-X-L/ETH_A_Sk interfaces

	Inputs
	Outputs

	ODUkP-X-L_AP:

ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart

ODUkP-X-L_AI_MultiframeStart
ODUkP-X-L_AI_TSF
ODUkP-X-L_AI_XAR
ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP-X-L/ETH_A_Sk_MI:

ODUkP-X-L/ETH_A_Sk_MI_Active
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable
	ETH_TFP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L/ETH_A_Sk_MI:

ODUkP-X-L/ETH_A_Sk_MI_AcVcPT
ODUkP-X-L/ETH_A_Sk_MI_AcEXI
ODUkP-X-L/ETH_A_Sk_MI_AcUPI
ODUkP-X-L/ETH_A_Sk_MI_cVcPLM
ODUkP-X-L/ETH_A_Sk_MI_cLFD
ODUkP-X-L/ETH_A_Sk_MI_cUPM
ODUkP-X-L/ETH_A_Sk_MI_cEXM
ODUkP-X-L/ETH_A_Sk_MI_cCSF
ODUkP-X-L/ETH_A_Sk_MI_pFCSError

Processes

See process diagram and process description in clause 11.5.1.2. The additional ODUkP-X-L_AI_XAR interface is not connected to any of the internal processes.

ODUkP-X-L specific sink process:

[image: image71.emf]vcPT Process

D

e

f

e

c

t

C

o

r

r

e

l

a

t

i

o

n

s

Extract vcPT

Extract CSF

dCSF

dVcPLM

dCSF

AI_TSF

dVcPLM

AI_CKAI_FSAI_MFSAI_D

M

I

_

c

C

S

F

M

I

_

c

V

c

P

L

M

M

I

_

A

c

t

i

v

e

AI_TSF

M

I

_

A

c

V

c

P

T

ODUkP-X-L_AP

Figure 11-37 – ODUkP-X-L specific sink process

PT: The function shall extract the vcPT byte from the PSI overhead as defined in clause 8.7.3 of [ITU-T G.798]. The payload type value for "GFP mapping" in clause 18.1.2.2 of [ITU-T G.709] shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM defect detection.

RES: The value in the RES bytes shall be ignored.

Defects

dVcPLM – See clause 6.2.4.2 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.
Consequent actions

The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dVcPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi

(
dCSF-RDI and CSFrdifdiEnable

aSSFfdi

(
dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cVcPLM
(
dVcPLM and (not AI_TSF);

cLFD
(
dLFD and (not dVcPLM) and (not AI_TSF);

cCSF
(
(dCSF-LOS or dCSF-OPU or dCSF-FDI) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.

40. Update clause 11.5.3.1 for ODU Adaptaiton
Change or add the text in RED:
11.5.3.1
ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)

The ODU2P/ETHPP-OS_A_So function creates the ODU2P signal from a free running clock. It maps the ETHPP-OS_CI information into the payload of the OPU2P, adds OPU2P Overhead (RES, PT) and default ODU2P Overhead.

Symbol

 [image: image72.emf]ETHPP-OS_CI

ODU2P_AI

ODU2P/ETHPP-OS_A_So_MI

ODU2P/ETHPP-OS_A_So

Figure 11-x – ODU2P/ETHPP-OS_A_So symbol

Interfaces
Table 11-x – ODU2P/ETHPP-OS_A_So interfaces

	Inputs
	Outputs

	ETHPP-OS_CP:
 ETHPP-OS_CI_D
 ETHPP-OS_CI_SSF

ODU2P/ETHPP-OS_A_So_MI:
 ODU2P/ETHPP-OS_A_So_MI_Active
 ODU2P/ETHPP-OS_A_So_MI_CSFEnable
	ODU2P_AP:
 ODU2P_AI_Data
 ODU2P_AI_Clock
 ODU2P_AI_FrameStart
 ODU2P_AI_MultiframeStart

NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Order Set information in [ITU-T G.7041].

Processes
A process diagram of this function is shown in Figure 11-x+1.

[image: image73.emf]ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

processes

ODU2P specific

GFP-F processes

FCSenable=false

CMuxConfig

CMuxActive=false

MI_CSFEnable

ETHPP-OS_CI_DCI_D_SSF

GFP_FrameGFP_FS

GFP_FrameGFP_FS

ODU2P_AI_D/CK/FS

ODU2P_AI_D/CK/FS/MFS

Figure 11-x+1 – ODU2P/ETHPP-OS_A_So process

Ethernet specific GFP-F source process:

The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to clause 7.9.2 of [ITU-T G.7041].
The UPI values for frame-mapped Ethernet shall be inserted for data or Ordered Sets respectively. (Table 6-3 of [ITU-T G.7041]). The rest of the fields but UPI field in Type Header are static as:

· PTI = 000 (Client Data)

· PFI = 0 (No FCS)

· EXI = 0000 (Null Extension Header)
GFP client management frames (PTI = 100) are inserted if CI_SSF is input and GFP pFCS generation is disabled (FCSenable=false).

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported (CMuxActive=false).

ODU2P specific GFP source process:
See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODU2 payload area according to clause 17.3.1 of [ITU-T G.709]. OPU CSF may be generated if CI_SSF is input.

ODU2P specific source process:
See clause 11.5.1.1 (k=2).

Defects

None.
Consequent actions

aCSF-LOS (CI_SSF and CSFEnable

aCSF-OPU (CI_SSF and CSFEnable
Defect correlations

None.
Performance monitoring
For further study.
41. Update clause 11.5.3.2 for ODU Adaptaiton
Change or add the text in RED:
11.5.3.2
ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)

The ODU2P/ETHPP-OS_A_Sk extracts ETHPP-OS_CI information from the ODU2P payload area, delivering ETHPP-OS_CI to ETHPP-OS_TCP. It extracts the OPU2P Overhead (PT and RES) and monitors the reception of the correct payload type.

Symbol

[image: image74.png]
Figure 11-x+3 – ODU2P/ETHPP-OS_A_Sk symbol

Interfaces
Table 11-x+2 – ODU2P/ETHPP-OS_A_Sk interfaces

	Inputs
	Outputs

	ODU2P_AP:
ODU2P_AI_Data
ODU2P_AI_ClocK
ODU2P_AI_FrameStart
ODU2P_AI_MultiframeStart
ODU2P_AI_TSF
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_Active
ODU2P/ETHPP-OS_A_Sk_MI_CSF_Reported
	ETHPP-OS_CP:
ETHPP-OS_CI_D
ODU2P/ETHPP-OS_A_Sk_MP:
ODU2P/ETHPP-OS_A_Sk_MI_AcPT
ODU2P/ETHPP-OS_A_Sk_MI_AcEXI
ODU2P/ETHPP-OS_A_Sk_MI_AcUPI
ODU2P/ETHPP-OS_A_Sk_MI_cPLM
ODU2P/ETHPP-OS_A_Sk_MI_cLFD
ODU2P/ETHPP-OS_A_Sk_MI_cUPM
ODU2P/ETHPP-OS_A_Sk_MI_cEXM
ODU2P/ETHPP-OS_A_Sk_MI_cCSF

Processes
A process diagram of this function is shown in Figure 11-x+4.
z[image: image75.emf]ETHPP-OS specific

GFP-F processes

Common

GFP-F processes

ODU2P specific

processes

ODU2P specific

GFP-F processes

CMuxConfig

CMuxActive=false

ETHPP-OS_CI_D

GFP_Frame/FS/SF

GFP_Frame/FS/SF

ODU2P_AI_D/CK/FS/TSF

ODU2P_AI_D/CK/FS/MFS/TSF

FCSdiscard=false

AcEXI

AcPT

AcUPI

pCRC16

dUPM

cCSF

cEXM

dLFD

cPLM

AcPFI

Figure 11-x+4 – ODU2P/ETHPP-OS_A_Sk process
Ethernet specific GFP-F sink process:

The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to clause 7.9 of [ITU-T G.7041].
See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected for data or Ordered Sets respectively (Table 6-3 of [ITU-T G.7041]).
Client signal fail from GFP-F or OPU may generate LF as included ETHPP-OS_CI_D.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported (MI_CMuxActive=false).

ODU2 specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODU2 payload area according to clause 17.4.1 of [ITU-T G.709].

ODU2P specific sink process:
See clause 11.5.1.2 (k=2).

Defects
dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].
dCSF-LOS – See clause 8.8.6.2.

dCSF-OPU – For further study.

Consequent actions
The function shall perform the following consequent actions:

aSSF
(
AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS
Defect correlations
The function shall perform the following defect correlations to determine the most probable fault cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM
(
dPLM and (not AI_TSF);

cLFD
(
dLFD and (not dPLM) and (not AI_TSF);

cUPM
(
dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM
(
dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF
(
(dCSF-LOS or dCSF-OPU) and (not dEXM) and (not dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported
Performance monitoring
For further study.

42. Renumber clause 11.5.5 to 11.5.4 and update 11.5.4 for ODU Adaptaiton
Change or add the text in RED:
11.5.4
ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)

The adaptation function that supports the transport of 1GbE signals in the OTN is the ODU0P to Client adaptation function (ODU0P/CBRx_A) (0≤x≤1.25G) described in [ITU-T G.798]. When the client is 1 GbE, the CBRx and ETC3 signals are equivalent; as such the ETY3/ETC3_A functions are bound to the ODU0P/CBRx_A functions.
43. Remove clause 11.5.6 for ETY3 to 1 GbE client Adaptaiton

44. Add new Appendix VIII for VID filtering
Appendix VIII –Configurations for Ingress VID Filtering

(This Appendix does not form an integral part of this Recommendation.)

This Appendix describes an example of the configuration for ingress VID filtering described in [IEEE 802.1Q].
[image: image76.emf]FF10FF20FF30FF40

FFx

Sk

So

10 20 30 40

10 20 30 40

Sk

So

10 20 40

Port APort CPort D

ETH_C

Sk

So

1…4094

20

10 20 40

Sk

So

1…4094

Port A

30

Figure VIII.1 –Example of configuration for ingress VID filtering
Table VIII-1 – VID Configuration
	VID
	Port A
	Port B
	Port C
	Port D

	
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress
	Ingress
	Egress

	10
	(
	
	(
	
	(
	(
	(
	(

	20
	(
	(
	(
	
	(
	(
	(
	(

	30
	(
	
	(
	(
	(
	(
	
	

	40
	(
	
	(
	
	(
	(
	(
	(

	Others
	(
	
	(
	
	
	
	
	

Figure VIII.1 and Table VIII-1 show an example of the configuration. For the ingress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_Sk function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function. For the egress configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_So function and ETH_CI signals corresponding VIDs are connected to ETH_FF processes in ETH_C function.

On ports A and B in this example, MI_Vlan_Config[1…4094] are set to ETHx/ETH-m_A_Sk in order to disable the Ingress VID filtering. In this case, incoming all VIDs traffic is once forwarded to ETH_C. Since ETH_FF is connected to configured ingress and egress ports only, the traffic is forwarded to the approproate ports.

45. Add MI_Active signal to various tables
The following tables contain MI_Active input signals to disable/enable the whole features of its adaptation function.

· ETHx/ETH_A_So_MI_Active (Table 9-5)

· ETHx/ETH_A_Sk_MI_Active (Table 9-6)

· ETHx/ETH-m_A_So_MI_Active (Table 9-7)

· ETHx/ETH-m_A_Sk_MI_Active (Table 9-8)

· ETHG/ETH_A_So_MI_Active (Table 9-9)

· ETHG/ETH_A_Sk_MI_Active (Table 9-10)

· ETHx/ETHG_A_So_MI_Active (Table 9-aa)

· ETHx/ETHG_A_Sk_MI_Active (Table 9-aa+1)

· ETHD/ETH_A_So_MI_Active (Table 9-15)

· ETHD/ETH_A_Sk_MI_Active (Table 9-16)

· ETHDi/ETH_A_So_MI_Active (Table 9-y)

· ETHDi/ETH_A_Sk_MI_Active (Table 9-y+1)

· ETY-Np/ETH-LAG-Na_A_So_MI_Active (Table 9-20)

· ETY-Np/ETH-LAG-Na_A_Sk_MI_Active (Table 9-21)

· ETH-LAG/ETH_A_So_MI_Active (Table 9-24)

· ETH-LAG/ETH_A_Sk_MI_Active (Table 9-25)

· ETYn/ETH_A_So_MI_Active (Table 10-4)

· ETYn/ETH_A_Sk_MI_Active (Table 10-5)

· ETY3/ETC3_A_So_MI_Active (Table 10-x)

· ETY3/ETC3_A_Sk_MI_Active (Table 10-x)

· Sn/ETH_A_So_MI_Active (Table 11-1)

· Sn/ETH_A_Sk_MI_Active (Table 11-2)

· Sn-X-L/ETH_A_So_MI_Active (Table 11-3)

· Sn-X-L/ETH_A_Sk_MI_Active (Table 11-4)

· Sm/ETH_A_So_MI_Active (Table 11-5)

· Sm/ETH_A_Sk_MI_Active (Table 11-6)

· Sm-X-L/ETH_A_So_MI_Active (Table 11-7)

· Sm-X-L/ETH_A_Sk_MI_Active (Table 11-8)

· Sn-X/ETC3_A_So_MI_Active (Table 11-9)

· Sn-X/ETC3_A_Sk_MI_Active (Table 11-10)

· Pq/ETH_A_So_MI_Active (Table 11-11)

· Pq/ETH_A_Sk_MI_Active (Table 11-12)

· Pq-X-L/ETH_A_So_MI_Active (Table 11-13)

· Pq-X-L/ETH_A_Sk_MI_Active (Table 11-14)
46. Add MI_MAC_Length signal to various tables
The following tables contain MI_ MI_MAC_Length input signals described in clause 8.6 of this recommendation.

· Sn-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-4)

· Sm/ETH_A_Sk_MI_MAC_Length (Table 11-6)

· Sm-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-8)

· Sn-X/ETC3_A_Sk_MI_MAC_Length (Table 11-10)

· Pq/ETH_A_Sk_MI_MAC_Length (Table 11-12)

· Pq-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-14)

· ODUkP-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-18)

	Contact:
	Akira SAKURAI
NEC Corporation

Japan
	Tel: +81-4-7185-6835
Fax: +81-4-7185-7810
Email: a-sakurai@da.jp.nec.com

	Contact:
	Huub van Helvoort

Huawei Technologies

P.R. China
	Tel: +31-20-4300-8108

Fax: +31-20-4300-888

Email: hhelvoort@huawei.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

_1232108935.unknown

_1353941200.vsd
ETY4/ETHPP-OS_A_Sk

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_Sk_MI

_1353941202.vsd
ETY4/ETHPP-OS_A_So

ETY4_AI

ETHPP-OS_CI

ETY4/ETHPP-OS_A_So_MI

_1232108936.unknown

_1232109091.unknown

_1231227405.vsd
ETHDe_FT

ETHDe_AP

ETHDe_FP

ETHDe_MP

ETHDe_RP

_1232108321.unknown

_1231225561.vsd
ETHDe

ETHDe_AP

ETHDe_FP

ETHDe_MP

ETHDe_RP

