IEEE 802.1 & 802.3 Packet Transmission Pre-emption Reasons for its needs

Previous 802.1 presentations Edited by Yong Kim @ Broadcom

Pre-emption Need

- Control Loop use cases in Automotive and Industrial, converged onto rest of Ethernet network infrastructure.
- Automotive -- 100 uS over three bridge hops @ 100 Mb/s and above (from March 2011, 802.1:
 - in public area: http://www.ieee802.org/1/files/public/docs2011)
 - <u>new-avb-KimNakamura-automotive-network-requirements-0311.pdf</u>
 - <u>new-avb-nakamura-automotive-backbone-requirements-0907-v02.pdf</u> (revised)
- Industrial -- <5 uS per hop, ~32 bridge hops @ 1000 Mb/s and above (from January 2011, 802.1). 125 uS over 32 hops desired.
 - <u>new-goetz-avb-ext-industrcom-0113-v01.pdf</u>
 - − <u>ba-goetz-industrial-profile-0509.pdf</u> ← /docs2009
 - Refined objectives from system vendors expected.
- Problem Statement:

(Ignoring the bridge and other delay for the moment)

- Max Length Ethernet Frame @ 100 Mb/s =~120 uS greater than automotive requirements.
- Max Length Ethernet Frame @ 1000 Mb/s =~12 uS greater than industrial requirements.
- "Head of Line" blocked behind Max Length Frame exceeds the requirements above.

Automotive Use Case 1 - Trends

□ There are multitude of in-vehicle bus systems to consider.

- □ LIN: Multi-drop "UART-like" with synchronization, <=19.2Kbps
- **CAN:** Widely available CSMA/CR bus system, <=1 Mbps
- □ FlexRay: Time-triggered TDMA Bus and Star system, <=10 Mbps
- **MOST:** Synchronous TDMA Ring, 25, 50, and 150 Mbps, Shared.
- **Ethernet:** Switched Full-Duplex (modern) Star system, 100 Mbps +, switched.

Vehicle Communication Zones

- D Powertrain: Engine, transmission
- □ Chassis: Steering, ABS, Tire pressure
- Body: Doors, Lamps, Seats, A/C
- □ Safety: Air-bags, Sensors, Actuators, Occupant Safety System
- □ Infotainment & Driver Assist: Navigation, Telematics, TV/Radio/CD/DVD, RSE, Cameras

D Trends in in-vehicle communication needs

- □ Infotainment and Driver Assist drives higher bandwidth (graphic panels, cameras, WLAN, BT)
- **D** Communication convergence: More buses are connected through use of gateways
- □ Information sourced in one zone and used in many zones (e.g. camera, sensor data)
- Vehicular Diagnostics interface is standardized to be over Ethernet and IP

- There is a need for a converged in-vehicle backbone network

Example next-generation automotive network architecture

Ethernet AVB applied to automotive control data transmission between domain gateways and in powertrain/chassis domains

: Possible AVB network (bold line)

BES: Bridged end station (ECU), ES: End station (ECU)

Automotive Use Case 3

QoS requirements for automotive control data class

Performance requirements for automotive control data class

- Maximum latency: 100 us / 5 AVB hops
 - Guaranteed latency
 - Topology independent
 - Automotive control data class to have higher priority than SR classes
 - Maximum 2 priority classes (e.g. Control data class and SR class A)

Preconditions for performance requirements

- Network type: Dedicated network in a vehicle
- Network attributes
 - Maximum AVB hop count: 7
 - Maximum number of nodes (bridged end station & end stations): 32
 - Maximum cable length: 24 m
 - Maximum end-to-end cable length: 30 m
- Automotive control data class attributes
 - Maximum data size (payload size): 128 bytes @FE ~ 256 bytes @GE
 - Maximum number of simultaneous transmission: 8 @FE ~ 32 @GE
 - Transmission period: 500 us
- Payload size for other/lower traffic classes: 256 bytes @FE ~ 1500 bytes @GE

These are our best estimates derived from multiple assumptions of the current and future automotive applications.

Industrial Use Case 1 - Applications

Industrial Communication

Industrial Use Case 2 - Topology

Typical Topology for Bridged LANs in Industry

Linear Topology (Line, Ring)

- Applications mostly feature distributed linear dimension, i.e. production lines
- The network is tailored to the application, i.e. line topologies
- To reduce total cost, 2-port-bridges are integrated into the end stations
- For enhanced availability, lines are closed to rings
- Homogeneous segments (100MBit or GBit)

Industrial Use Case 3 - Requirements

Requirements for MSRP to support low latency SRclass

Low Latency SRclass with Burst

 Low Latency < 125µs over ~32 hops, data < 300 Bytes (-> avoid interference Best Effort Traffic with Low Latency Traffic)

Stream Preemption

- Defined Ranking for SR
- Higher ranking SR must be able to preempt lower ranking SR

Multiple Talker with TDMA

- Mechanism to allocate fixed slot numbers to talkers

Common Feedback 1a

- Why don't Automotive just use higher speed?
- Answer: EMC is the bottleneck (from Pg 10, BMW presentation @)
 - <u>http://www.freescale.com/files/ftf_2010/Americas/WBNR_FTF10_AUT_F0558.pdf</u>

Common Feedback 1b

- Why don't Industrial just use higher speed?
- Answer: It does (adopts Gigabit Speeds), and the dominating latency comes from the electronics (bridges, PHYs) when cascading. There is limit on how much latency you could improve.

Common Feedback 2

Why can't you just use shorter max size frames?

• Answer: It could and it is an interim solution.

Why Interim solution?

- Answer: Limits converged infrastructure of data, streaming, control unless every device in the network needs changes to adopt new max size
- Answer: Payload efficiency goes down significantly. 100 Mbps link with 128 byte max frame versus 1500 byte would be 41% versus 95% of link SW.
 Any additional header overhead make this efficiency worse.
 Packet Length IPG Preample MAC Header L2 Payload
 Packet Length IPG Preample MAC Header L2 Payload
 IPv4 HDR

Packet Length	64	128	256	1536
IPG	12	12	12	12
Preample	8	8	8	8
MAC Header	16	16	16	16
L2 Payload	28	92	220	1500
L2 Payload/Pkt Size	44%	72%	86%	98%
IPv4 HDR	20	20	20	20
L3 Payload	8	72	200	1480
L3 Payload/Pkt Size	13%	56%	78%	96%
TCP HDR	20	20	20	20
L4 Payload	-12	52	180	1460
L4 Payload/Pkt Size	NM	41%	70%	95%

Common Feedback 3

Why can't you just use star-wired network?

- Answer: Industrial it does when it could. Legacy cabling is combination of star, ring, overlapping rings, and daisy-chains. One of the attractiveness of Ethernet is that it could supports existing wiring. Rings offer attractive low-cost and complexity redundant paths.
- Answer: Automotive One of the attractiveness of Ethernet is reduction of wiring (400~600 lb of cabling in a car).
 Combination of star and daisy chain topology allow for ease of wire routing and managing optional package connections.

Thank you!

Relevant 802.1 documents.

802.1 Sept 2011 Interim

Pre-emption – Reasons for its needs

Page 13

Relevant 802.1 documents

All located in: <u>http://www.ieee802.org/1/files/public/docs2011</u>, except noted.

- Automotive
 - <u>new-avb-KimNakamura-automotive-network-requirements-0311.pdf</u>
 - <u>new-avb-nakamura-automotive-backbone-requirements-0907-v02.pdf</u>
- Industrial
 - − <u>ba-goetz-industrial-profile-0509.pdf</u> ← /docs2009
 - <u>new-goetz-avb-ext-industrcom-0113-v01.pdf</u>
 - <u>at-klein-kleineberg-avb-redundancy-continuation-0711.pdf</u>
- Preemption Related
 - <u>new-avb-kim-8021-8023-Preemption-Problem-Statements-0911-v04.pdf</u>
 - <u>new-avb-kim-8021-Preemption-DRAFT-PAR-5C-0911-v05.pdf</u>
 - <u>new-imtiaz-goetz-fragmentation-0511.pdf</u>
 - <u>new-kim+goetz-Ultra-Low-Latency-Switching-v5.pdf</u>
 - avb2-cgunther-sr-class-preemption-0711-v05.pdf
 - <u>new-avb-boiger-ultra-low-latency-shaper-0711.pdf</u>