Bridge Model & Operation for ECMP & its OAM

Ali Sajassi

March 16, 2011
802.1 Plenary Meeting - Singapore
Agenda

- Frame Format
- Bridge Model
- OAM Operation
- Interoperability
Requirements

- Support of per-hop ECMP
- Support of TTL for loop mitigation
- Support of flow-id
 - To avoid deep packet inspection in the core
 - To provide proactive service-level monitoring
- Flexible n-tuple hash algorithm for flow-identification
 - Any edge node can choose any set of n-tuples and any hash algorithm to derive a flow id
- Support proactive service-level monitoring
 - For a given flow-id, the path for that flow through the network be deterministic
Existing PBB Frame Format

- **PCP**: Priority Code Point – 3 bits
- **DE**: Discard Eligible – 1 bit
- **UCA**: Use Customer Address – 1 bit
- **Rsv1**: Reserved1 – 1 bit
- **Rsv2**: Reserved2 – 2 bits
- **I-SID**: Service ID – 24 bits
New ECMP Frame Format

- **PCP**: Priority Code Point – 3 bits (copied from B-tag)
- **DE**: Discard Eligible – 1 bit (copied from B-tag)
- **Rsv**: Reserved – 6 bits
- **TTL**: Hop Count – 6 bits
- **Flow ID**: 16 bits

Note 1: Reserved bits can be used for Ether sub-type and OAM indication if needed

Note 2: Only two additional bytes relative to 802.1ah frame. There is no need to send B-tag in the frame because unicast ECMP frames don’t need B-VID. PCP/DE portion of B-tag is reflected in the F-tag.
Pros

- Modular tag design consistent with IEEE baggy pants diagram and shim addition/removal
- Keeps the I-tag intact so all the existing processing/procedure for I-tag can remain the same
- Easy processing at the disposition bridge - e.g., if there is an F-tag, then simply strip it and throw it away and process I-tag just as before
- Allows for F-tag to be used independently with other frame formats for future application (if need arises)
- PCP/DE bits in F-tag allows network operator to set CoS bits for ECMP packets independent from individual I-SIDs. This application is mostly relevant in MetroE as opposed to DC networks.

Consider that there is a 802.1Qaq network at one end and 802.1Qbp (ECMP) at the other end and these two networks are getting connected via an I-tag NNI. The PCP/DE bits in F-tag and B-tag allows each respective networks (802.1Qbp and 802.1Qaq) to implement their CoS independent from individual I-SID CoS. In case of DC application, PCP/DE for F-tag can be simply set to the same one as I-tag.
Cons

- Two addition bytes are needed relative to 802.1ah frame format
 - F-tag is two bytes longer than B-tag
 - If a combined tag used for both F-tag and I-tag, then a saving of two additional bytes can be achieved because of single Eth-Type field. However, it will be difficult to compress further because of the need for even-word alignment

<table>
<thead>
<tr>
<th>Ether Type = I-tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCP(3b)</td>
</tr>
<tr>
<td>DE (1b)</td>
</tr>
<tr>
<td>UCA (1b)</td>
</tr>
<tr>
<td>rsv1 (1b)</td>
</tr>
<tr>
<td>rsv2 (2b)</td>
</tr>
<tr>
<td>TTL (6b)</td>
</tr>
<tr>
<td>Flow–ID</td>
</tr>
<tr>
<td>(16b)</td>
</tr>
<tr>
<td>I-SID part-1</td>
</tr>
<tr>
<td>(8b)</td>
</tr>
<tr>
<td>I-SID part-2</td>
</tr>
<tr>
<td>(16b)</td>
</tr>
</tbody>
</table>
Agenda

- Frame Format
- Bridge Model & Operation
- OAM Operation
- Interoperability
Modified Baggy Pants Diagram for TTL & Flow-ID processing at Bridges

EM_UNITDATA.indication (• destination_address, • source_address, • mac_service_DU, • priority, • drop_eligible, • vlan_identifier (default), • flow_identifier (optional), • TTL (optional) • etc.)

M_UNITDATA.indication (• destination_address, • source_address, • mac_service_DU, • priority, • drop_eligible, etc.)

EM_UNITDATA.request (• destination_address, • source_address, • mac_service_DU, • priority, • drop_eligible, • vlan_identifier (default), • flow_identifier (optional), • TTL (optional) • etc.)

M_UNITDATA.request (• destination_address, • source_address, • mac_service_DU, • priority, • drop_eligible, etc.)
Add New or Modify Sub-Claususes 6.9 & 6.10

- If the tag is F-tag, then extract TTL and flow_identifier from the F-tag and perform the following functions
- Use the flow_identifier in the MAC relay to select among ECMPs
- Use TTL to perform loop mitigation as follow:
 - Upon receiving TTL, if zero then discard the frame; otherwise, decrement TTL and process the frame
 - After decrementing TTL, if TTL==0 and UCA==0, then perform OAM processing
 - When setting TTL for unicast frames, it should be set to more than the min. required to accommodate re-forwarding during failure scenarios
 - When setting TTL for multicast frames, it should be set to the longest branch in the multicast tree plus a delta
Sub-Clause – Cont.

- Flow-id is passed as a parameter of EISS API to MAC relay

- The MAC relay filtering database is enhanced so that for MAC addresses that correspond to ECMPs, it maintains several interface IDs for each MAC address since different ECMPs can take different interfaces.

- The MAC relay uses the flow-id to hash among different interface IDs for a given MAC address and select one of them
• Compute flow-id based on n-tuple
• Add F-tag in lieu of B-tag (w/ Flow-ID, TTL, PCP) before I-tag frame
• Perform ECMP using Flow-ID

• Perform per-hop ECMP using Flow-ID

• Simply strip and discard F-tag
• Proceed w/ I-tag processing as before
Advantages of Homogenous Hash()

- Enables proactive service-level monitoring

 Without homogenous hash(), only flow-level monitoring can be performed – similar to what is already done in MPLS and IP networks

- Validates performance of ECMP function – e.g., traffic is equally distributed among ECMPs

 Without homogenous hash(), it is not possible to differentiate between a failure scenario and skewed hash() by a node
Breaking Hash() into two Parts

- Break the hash algorithm into two parts:
 i) Use flow parameters (n-tuple) to generate a Flow ID
 ii) Use Flow ID and a local ID to generate a hash index

- Part-I is performed by only BEBs
- Part-II is performed by both BEBs and BCBs
 Only Part-II needs to be homogenous in order to meet the above requirements (which is lot easier than mandating part-I to be homogenous)
No Need for B-tag

- Currently in clause 6.11, I-SIDs are groups into different B-VIDs bins

- In 802.1aq, for a given I-SID, the same B-VID is used for both unicast and mcast frames because of congruency

- For ECMP operation, using the same B-VID for both mcast and unicast frames is not possible because
 - B-VID identify different algorithms and thus the same B-VID cannot represent both ECT and ECMP algorithms
 - For ECMP operation, the load balancing is performed across the entire network (spanning across all the defined ECT). Therefore, ECMP can NOT use the same B-VID as ECT.

- Since we have broken hash algorithm, having a uniform algorithm for ECMP path selection based on flow-id [i.e., Hash-2()], makes it possible to use a single default B-VID for ECMP I-SIDs
ECMP Indication

Question: how do we indicate that an ECMP needs to be performed on an I-SID in CBP?

Three options:

A) Add a 1-bit flag to the I-SID table to indicate if this I-SID to be subjected to ECMP processing

B) Add a second column of B-VIDs for a given I-SID, and based on unicast/mcast indication use different B-VID for a given I-SID

C) Use a different I-SID for ECMP

D) Any other suggestion?

Selection by process of elimination:

Option (c) deviates from 802.1ah provisioning fundamentals of using a single I-SID to identify a service

Option (b) is somewhat too expensive – creating a second B-VID columns for I-SIDs

Option (a) is the simplest option and gets the job done
Processing Change in Clause 6.11

- If ECMP-bit is not set for an I-SID, then process as before

- Else if ECMP-bit is set for an I-SID, then if B-MAC DA is mcast/bcast, process as before
 Else if B-MAC DA is unicast use the default B-VID
Agenda

- Frame Format
- Bridge Model & Operation
- OAM Operation
- Interoperability
NOTE: Clause 6.11 needs to be modified to indicate that all ECMP I-SIDs are mapped to a single default B-VID
Baggy Pants Model for OAM at BEB – Cont.

- The reason for having the flow MEPs at CBP instead of PIP is to have a consistent model and operation for both BEB with B component and BEB with IB components.

- I-SID MEPs require additional enhancement to transmit CC messages on a round robin among different flows for a given E-SID.
Baggy Pants Diagram for OAM operation at BCB

MAC Relay (Clause 8)

Flow ID Multiplex Entity (sub-clause)

ISS
ISS
ISS
ISS

Flow ID Multiplex Entity (sub-clause)

ISS

TTL & Flow ID Processing (sub-clause)

ISS

Clause 6.7
OAM Granularity: Network, Service & Flow

- **Network OAM**: OAM functions performed on a Test VLAN. Test Flows are chosen to exercise all ECMPs for the Test VLAN.

- **Service OAM**: OAM functions performed on the user VLAN itself. Test Flows are chosen to exercise all the ECMPs.

- **Flow OAM**: OAM functions performed on the user Flows.
Flow OAM (reactive)

- User supplies flow information, including one or more of:
 - MAC SA and/or DA
 - IP Src and/or Dst
 - Src and/or Dst Port (TCP or UDP)

- Flow parameters are converted to a flow ID (e.g., NMS can query platform using flow parameters and get back flow ID)

- MEP monitors the flow by sending periodic CCMs for that flow.
 - Monitoring of unicast flows uses unicast CCMs
 - Monitoring of multicast flows uses multicast CCMs
Service OAM (proactive)

- A MEP, knowing the topology and how to exercise the ECMPs, first calculates the necessary Test Flows for full coverage of all paths in a given service instance.

- On a per service instance basis, MEPs perform monitoring of all unicast and multicast paths using the Test Flows.

- MEPs follow a ‘round-robin of Test Flows’ scheme to verify connectivity over all ECMP paths (unicast) and shared trees (multicast).
 - Round-robin scheduling reduces processing burden on nodes, and modulates the volume of OAM messaging over the network.
 - Comes at the expense of relatively longer fault detection time.
 - For critical flows, it is possible to schedule their connectivity check continuously.
 - MEP CCDB will track every flow independently (timer per flow per remote MEP rather than per remote MEP in CFM).
Network OAM (Proactive)

- Network OAM is a degenerate case of service OAM where a single default E-SID can be configured on all BEBs and the CFM is performed for that default E-SID just as described above for service-level OAM.
 - This default E-SID is per B-VID – e.g., per ECMP algorithm. If there are multiple ECMP algorithms in the network and the E-SIDs are divided among these algorithms, then one default E-SID is needed per E-SID group (e.g., per B-VID).
 - Typically there is only a single ECMP algorithm.
CFM Flow
Agenda

- Frame Format
- Bridge Model & Operation
- OAM Operation
- Interoperability
Inter-operability: Between Different Regions

- **Tx:** BEBs in the ECMP-enabled network (e.g., BEB-1 and BEB-2) will strip F-tag and pass and I-tag frame to the other region. If any I-SID translation is required, then it is done per clause 6.11.

- **Rx:** BEBs in the ECMP-enabled network upon receiving an I-tag frame, check to see if it is ECMP-enabled. If so, then perform hashing function and add an F-tag to the frame.

- No changes is needed on the ECT-enabled network (both BEBs and BCBs).
Inter-operability: Within one Region

- Use default B-VID to identify ECMP frames just like
 - B-VIDs used for 802.1aq (one per ECT)
 - B-VIDs used for PBB-TE
 - B-VIDs used for PBB with MSTP

- To support ECMP
 - ECMP-enabled bridges form a sub-graph using IS-IS and exchange F-tag frames only among themselves
 - Non-ECMP-enabled bridges will never receive F-tag frames
Backward Compatibility

- A network can be configured to simultaneously support ECMP and ECT modes
- In a single network, we cannot mix ECMP service points with non-ECMP because it doesn’t make sense
- In multiple networks where an ECMP service in one network needs to interoperate with non-ECMP service in another network, Interoperability is easily provided using I-tag service interface.
- IS-IS can support both ECMP and non-ECMP BCBs in the same network and ensure gradual migration
Appendix – A
- How to make the adjacency list consistent across all nodes?
- OAM for proactive service-level monitoring needs to be expanded with step by step procedures for fault detection & verification
Modified Baggy Pants Diagram for only TTL processing at Bridges

EM_UNITDATA.indication (annual
• destination_address,
• source_address,
• mac_service_DU,
• priority,
• drop_eligible,
• vlan_identifier,
• flow_identifier,
• etc.)

M_UNITDATA.indication (annual
• destination_address,
• source_address,
• mac_service_DU,
• priority,
• drop_eligible,
• vlan_identifier, etc.)

EM_UNITDATA.request (annual
• destination_address,
• source_address,
• mac_service_DU,
• priority,
• drop_eligible,
• vlan_identifier,
• flow_identifier,
• etc.)

M_UNITDATA.request (annual
• destination_address,
• source_address,
• mac_service_DU,
• priority,
• drop_eligible, etc.)
The MEPs for B-VIDs are not used when doing ECMP.

Optional because B-tag is optional.

E-SID MEPs requires enhancement to perform round-robin of CCs among different flows for a given E-SID.

Note: This diagram needs to be modified to put the shim for flow ID inside the shim for B-VID – e.g., to represent a nested shim.