802.1Qbp
Shared Tree (*.G) Algorithms

Peter Ashwood-Smith
peter.ashwoodsmith@huawei.com
Motivation

• 802.1Qbp is introducing new ECMP behavior for unicast in an 802.1aq network.
• There is a desire to also do ECMP (head end) over SPBM multicast trees.
• So far we have only discussed the (S,G) trees (existing .1aq style and Ben’s alternatives).
• I’d like to discuss some simple (*,G) options as state reduction likely more important than diversity.

N.B (S,G) is source/group specific tree, i.e. <SpSourceID>||<SID> in the DA
(*.G) is shared by all sources but one group i.e. <Constant>||<ISID> in the DA
Considerations

- What we really want is a minimum spanning tree that covers just a subset of the nodes (those in the ISID).
- This is referred to as a Steiner Tree.
- A Steiner Tree computation is **NP-complete**.
- “Non Polynomial” means it’s \(\gg O(N^c) \) for any constant \(c \).
- “Complete” is a fancy way of saying we ain’t gonna solve it here..
- Basically it’s one of those problems that you have to enumerate all solutions and pick the best... And there are usually \(O(n!) \) solutions to pick from....
Solutions

There are a few less optimal (*,G) solutions:

1. Pick some node as a root and use SPF from ‘it’ as tree.
 - This is $O(n \times \log N)$ but sends traffic everywhere!!!
2. Modify above by pruning per ISID.
 - This is $O(N \times \log N + I \times \log I)$
 - Still non shortest path routing but state is minimal
3. Other solutions aimed at reducing non shortest path routing issues but increase CPU.. these are FFS.
Detailed Look at Option #2

- The 802.1aq CIST algorithm (which is just the STP algorithm done as a computation), can be reused for per ISID (*,G) trees in .1Qbp
- The multicast address format can be the existing PBB format i.e: 00-1e-83-xx-xx-xx (where x.. Is the ISID)
- 16 different shared trees can be computed by finding the lowest BridgeIdentifier under the 16 .1aq ECT masks i.e. 0x00, 0xff, 0x11, 0x22 ... 0xee.
- These shared trees produce almost symmetric congruent results to the .1aq (S,G) trees in fat tree networks.
- Root selection automatic based on algorithm, auto recovery to new root etc. No explicit encoding of root in DA required.
- Can use F-TAG with TTL, or can rely on digest for loop prevention, or both....
- Can use same B-VID as unicast (no SVL), or different (with SVL) or even no B-VID.
A (*,G) is computed using the Lowest Bridge Identifier (node 1) CIST algorithm. The full tree is shown in pink.

The full tree is shown in pink.

Two ISIDs are pruned against this tree for Multicast, sub trees below: ISID 17 and ISID 16.

We show the Mcast state at node 3 for Each ISID.
Example #1 – pruning

FULL MASK 0x00 (ROOT=1) TREE

ISID 16 PRUNED

ISID 17 PRUNED
A \((*,G)\) is computed using the **highest** Bridge Identifier (node 11) i.e. CIST algorithm XOR 0xff.

The **full tree** is shown in pink.

One ISIDs is pruned against this tree for Multicast, sub trees below: ISID 18

We show the Mcast state at node 3 for Each ISID.
Example#3- Coverage is not bad

ALL 16 (*,G) Trees shown superimposed. Basically the CIST algorithm 16 times but with different root choices based on Bridgedentifier XOR Mask[i]
Example#3- Some of the individual trees

ALG MASK=0x8888.
So node .. 108 is root.

ALG MASK=0x444444.
so node 104 is root.
Example#3- Comparison to ECT source tree in Fat Tree

(S,G) Tree

Unicast and Mcast Routes from Node 7 to all other nodes.

(*,G) TREE

Multicast Shared Tree Routes from node 7.

Note routes to all other leaves 8,6,5 is identical To (S,G) tree above.
Option #2 Basic Algorithm

Compute Shared Tree (alg, self) { // alg==0 => .1aq CIST

 root = find lowest Bridgeldentifier XOR Mask[alg]

 run SPF from root where
 tie break on equal cost winner =
 lowestBridgeldentifier XOR Mask[alg]
}

Multicast DA per ISID can then easily be generated by sorting the set of all ISIDs and the interface to reach that ISID.

 So total run time is O(16 x [(N x Log(N)) + (I x Log(I))])
1. At self do the SPF from selected root. Result is upward pointing parent pointers to root.

2. For each node in network assign it the local interface that reaches it. Eg: 5 and everything above it via if/2; 7 and everything below it by if/4 etc.

3. Then traverse network and generate a list of <ISID, IF/#> records ..will have lots of duplicates.

 Sort:
 I2,if/2 I1,if/3 I1,if/4
 I3,if/2 I1,if/3 i2,if/3
 I1,if/3 I2,if/3 i2,if/3
 I2,if/3 I3,if/3 i3,if/2
 I1,if/4 I1,if/4 i3,if/3

 Traverse and generate Mcast
 DA=00-1e-83-00-00-02
 OutIF = {if/2, if/3, if/4}

Ignore if only reachable via one interface ..
108 node example – ISID 100 with 4 attachment points