NVO3 introduction and VDP new requirements

Yingjie Gu

Network Virtualization Overlays

- Target: Support for multi-tenancy, with reqs:
 - Traffic isolation
 - Address independence
 - Support the placement and migration of VMs

• Basic idea:

- Creating overlay by assigning a global unique VN Name and VNID for each overlay network (DCVPN)
- Deploy a Network Virtualization Edge (VPNGW) at edge of the overlay network
- VNID is indicated in tunnel encapsulation.

Example Framework - NVE on ToR SW

NVE: Network Virtualization E VAP: Virtual Access Point

VNI: Virtual Network Instanc

Basic Regs on TES-NVE protocol:

- Membership of which VNI (VSIID/or add a VN Name field)
- VM connectivity (Associate, De-associate, S-bit, M-bit)

Optional Reqs

• Inner address and local VID (Filter info), only useful while network between TES and NVE is L2

More Cases

- L3 case: NVE is on a router, i.e. L3 connection between TES and NVE
- Indirect L2/L3 case: NVE is on SW/Router9316503 but there are other devices between TES and NVE, e.g. bridge

L3 case

- Special Reqs to VDP
 - No Filter infor (MAC/VLAN) is needed
 - VDP need to be carried on protocol supported by router:
 - Either enable router to support ECP
 - Or enable VDP to be carried in another protocol, and Hypervisor need to support that protocol too
 - Will this also require CDCP be supported by router?

Indirect L2/L3 case

- Special Reqs on VDP
 - VDP should traverse more than bridges
 - Maybe use the intermediate bridges as relay?
 - Or update VDP to transmit to non-adjacent bridge?

Can we do something in DCB?