Fault Hypothesis (very rough)

- Faults that affect all traffic
 - Link failure
 - Node failure

- Faults that affect specific flow(s)
 - Memory error
 - FDB entry error
Why not test all paths?

- Complexity in determining cover set
 - Which (minimal?) set of addresses covers all paths
 - How many peers does each MEP expect (or how many MEPs/MAs are required)?
 - How does this change with topology?
- Faults that affect all traffic are recognized and routed around (assuming some connectivity remains)
 - So path test CCMs are rerouted over remaining connectivity
 - I.e. they do not actually test specific paths
- Faults to specific CCM flows are expected to be extremely rare
 - And therefore not particularly useful
- Monitoring all FDB state (CCM for every address) does not scale
 - And has diminishing usefulness
- Therefore, decided one endpoint reachability monitor was sufficient
 - Default I–SID group address state automatically installed – use this!
 - Can instantiate MA to monitor entire B–VID or endpoints for a given service
Why allow arbitrary LTM DA?

In xSTP controlled VLANs, LTM uses a reserved group DA
- Floods through Bridges that do not have MIPs
- Only one path in spanning tree, so will find MIPs further on that can provide LTRs

In SPBM
- No flooding; and No forwarding state for LTM reserved addresses
- **Could** use source specific group address for default I-SID; however
- All FDB state is computed and installed (not learned)
- Increased possibility of errant FDB entries that do not follow “expected” path
- If a Bridge without MIPs is traversed by LTM and the default address is forwarded differently from target address (**a bug**) the trace **will not find** the path of interest further on...
 - May find path that looks good, but is not the real path
 - May find no path, but there really is a path somewhere else

Better to **use target address as the DA so real path is traced accurately through Bridges with no MIPs!**
If we do not need to monitor all paths;
If LTM should use target address as DA;
Then the “SPBM MA” and “ECMP VID MA” function in the same way!
 ◦ Of course the F-TAG information must be included when using flow filtering
The current draft is based on these decisions
 ◦ See next slide for details (presented in April & May)
802.1Qbp CFM – in one slide

<table>
<thead>
<tr>
<th>CCM VLAN</th>
<th>DA is SPBM default I-SID SPsourceID+00-00-FF</th>
<th>Take advantage of installed forwarding state for SPBM default I-SID All to all CCMs, provision MAID and expected MEP IDs Tests endpoint reachability, not all paths</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCM path</td>
<td>DA is individual address of CBP Cycle through Flow Hash values</td>
<td>Tests multiple paths between two points; use TE-SID to identify MA MEPs located in TESI multiplexer ; <SA, DA, VID> selection Send each Flow Hash 4 times to cause RDI in case of path fault Correlate RDI with Flow Hash via cycle location, sending rate, path delay</td>
</tr>
<tr>
<td>LBM</td>
<td>DA is any individual/group address Use PBB-TE MIP TLV to target MIP</td>
<td>Use same MIP datapath as for PBB-TE</td>
</tr>
<tr>
<td>LBR</td>
<td>DA is LBM SA</td>
<td>No change here from VLAN CFM case</td>
</tr>
<tr>
<td>LTM</td>
<td>DA is any individual/group address Flow Hash for individual address</td>
<td>Same rules as PBB-TE, allowing multiple Egress ports Use flow hash in FDB lookup, if required</td>
</tr>
<tr>
<td>LTR</td>
<td>DA is Original MAC Address from LTM PDU</td>
<td>No change here from VLAN CFM case</td>
</tr>
</tbody>
</table>