SIEMENS

Multi-path Link-state Routing

2012-01-16
IEEE 802.1 AVB TG Meeting
January 2012, Munich, Germany

Michael Bahr, Siemens AG Franz-Josef Götz, Siemens AG

SIEMENS

Overview

Single Path Routing

- Link State Routing / Dijkstra's Algorithm
- Link State Routing in IS-IS

Multi Path Routing

- Edge Disjoint vs. Node Disjoint
- Simple 2 Step Approach
- Problems of Simple 2 Step Approach
- Correct Approach
 - Edge Disjoint Shortest Pair Algorithm
 - Node Disjoint Shortest Pair Algorithm

Single Path Routing

The Task:

- In general:Find a path from source S to destination D in a network.
- More specific:
 Find the shortest path (= best path) from source S to destination D in a network with respect to a specific link metric.

Link State:

- two endpoints of link
- link metric (often called "link cost", "link weight", or "link length")
- direction
- different, equivalent ways of representation

Dijkstra's Algorithm

```
N set of nodes in network
Nb(i) set of neighbor nodes of node i
d(i) distance from node i to source S (= sum of the link metrics from S to i)
l(ij) metric of link from node i to node j (i and j are neighbors)
P(i) predecessor of node i on path from S to i
U set of nodes for which the shortest path from S has not yet been found
```

1. Initialization

```
d(S) := 0; d(i) := l(Si) \text{ if } i \in Nb(S), d(i) := \infty \text{ otherwise;}
U := N - \{S\};
```

2. Selection of next node

```
j := j \in U with d(j) = \min d(k) \forall k \in U;

U := U - \{ j \};

if j == D then STOP; // if U == \emptyset then STOP
```

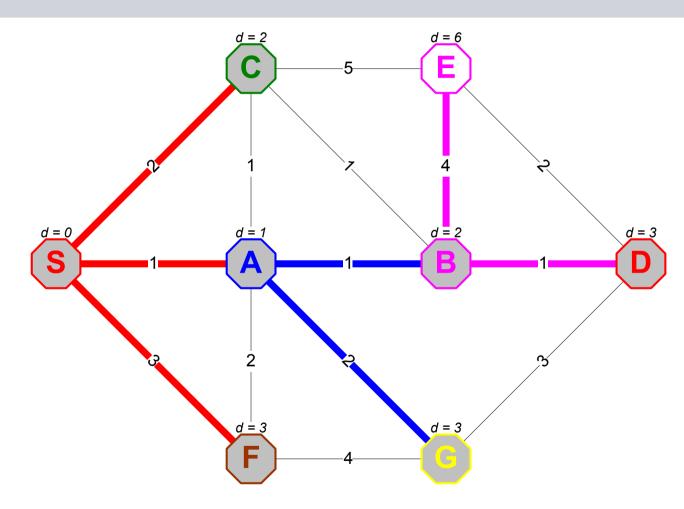
3. Update of distances and predecessors

```
\forall k \in (Nb(j) \cap U) \text{ if } d(j) + l(jk) < d(k) \text{ then}
d(k) := d(j) + l(jk);
P(k) := j;
qoto 2.
```

Dijkstra's Algorithm first described in [1] description based on [2]

SIEMENS

Dijkstra's Algoritm – An Example

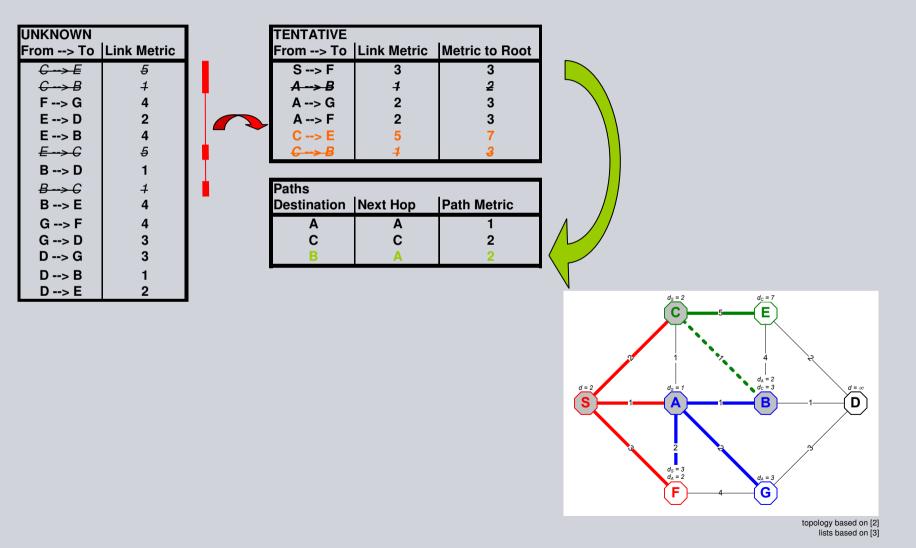


Link-state Routing Algorithm in IS-IS

Three Lists

- Unknown: all links not processed yet, corresponds to i∈ U
- Tentative: all links with nodes currently processed, corresponds to i∈ U with d(i)<∞</p>
- Paths or Known: all processed nodes and predecessors, corresponds to i∉ U
- (1) Start with root node as node under consideration
- (2) Move all link states containing the considered node from Unknown list to Tentative list, if Tentative list is empty STOP
- (3) Select link state with best cost to root from tentative list and add new node to Paths list and make the new node the considered node
- (4) Delete link state with worse cost to root for the same new node from Tentative list
- (5) go back to (2)

Link-State Routing Algorithm in IS-IS – An Example

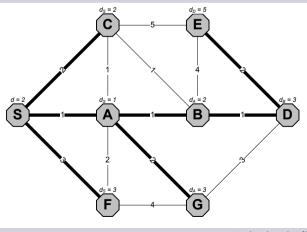


Link-State Routing Algorithm in IS-IS – An Example

UNKNOWN		
From> To	Link Metric	

TENTATIVE		
From> To	Link Metric	Path Metric

Paths		
Destination	Next Hop	Path Metric
Α	Α	1
С	С	2
В	Α	2
F	F	3
G	Α	3
D	Α	3
E	Α	5



topology based on [2] lists based on [3]

Multi Path Routing

The Task:

- In general:
 Find m multiple paths from source S to destination D in a network (if they exist).
- More specific:
 Find the shortest set of m paths (= set of m paths with best total value) from source S to destination D in a network with respect to a specific link metric (if they exist).
- The favourite: m = 2

Edge Disjoint:

- no shared links (edges)
- copes with excavators, spades, digging, link breaks, ...

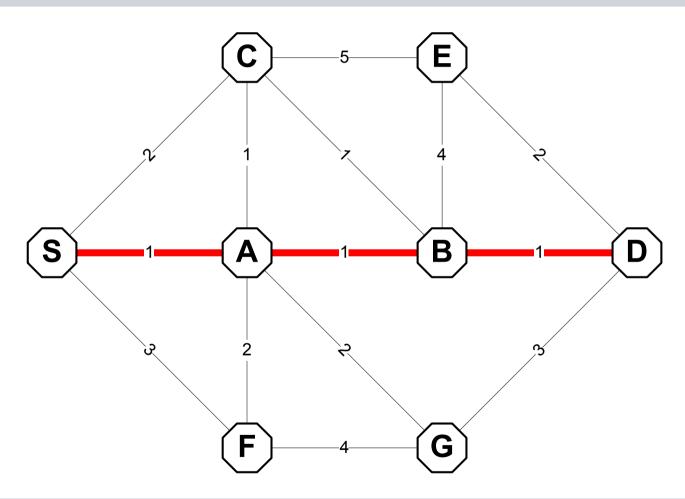
Node Disjoint:

- no shared intermediate nodes (source S and destination D are shared)
- copes with node failures

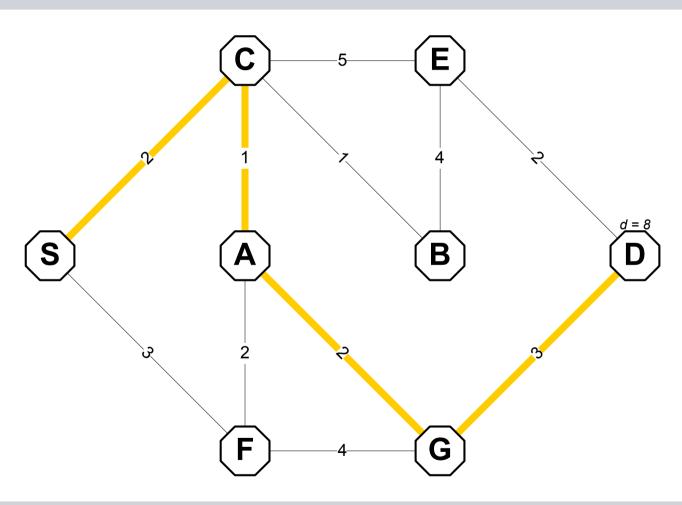
Simple 2 Step Approach

- 1. Use Dijkstra's Algorithm to find a first shortest path.
- 2. Edge-disjoint: remove links of found shortest path from network topology. Node-disjoint: remove intermediate nodes of found shortest path and links connecting them from network topology.
- 3. Use Dijkstra's Algorithm on pruned network topology to find a second shortest path.

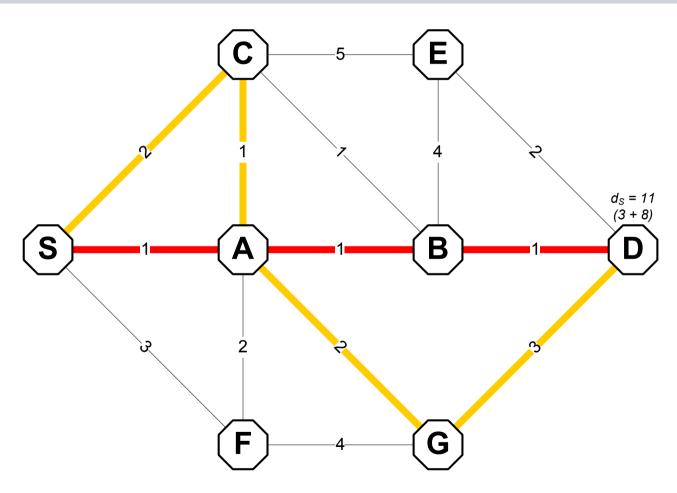
Simple 2 Step Approach Edge Disjoint – An Example



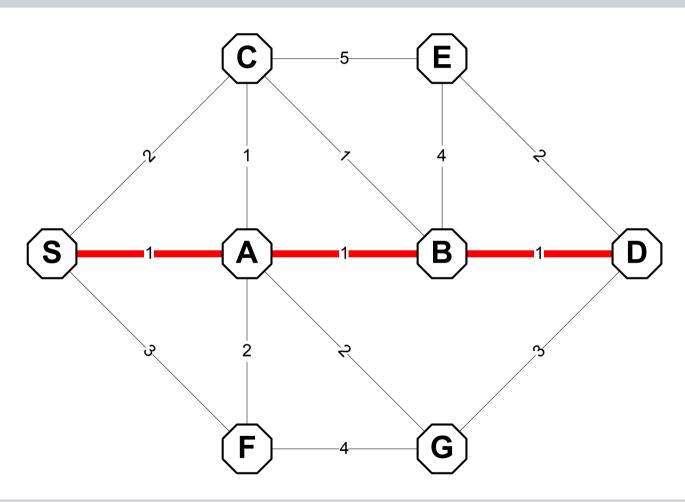
Simple 2 Step Approach Edge Disjoint – An Example



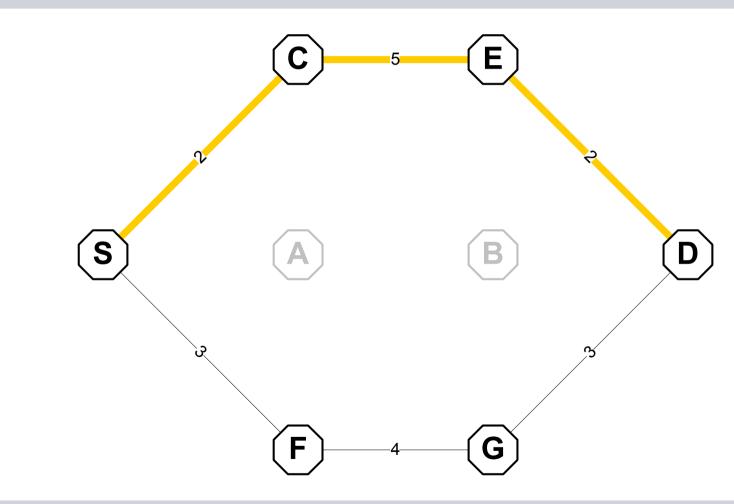
Simple 2 Step Approach Edge Disjoint – An Example



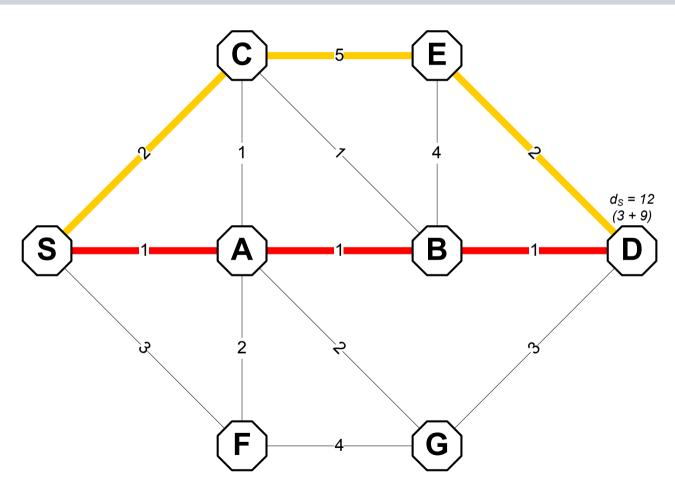
Simple 2 Step Approach Node Disjoint – An Example



Simple 2 Step Approach Node Disjoint – An Example



Simple 2 Step Approach Node Disjoint – An Example



Problems with Simple 2 Step Method

Sub-Optimality:

- more than one set of m>1 edge-disjoint / node-disjoint paths might exist in a network
- Simple 2 Step Method might NOT find the set of m>1 paths with least total length

False Alarms:

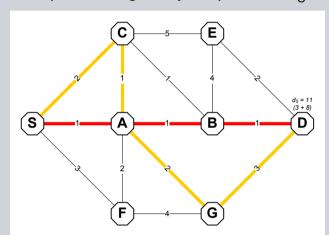
- Simple 2 Step Method might NOT find a set of m>1 edge-disjoint / node-disjoint paths even if it exists
- failure to find existing m>1 edge-disjoint / node-disjoint paths

Observation: The $_{,1} \rightarrow n^{*}$ problem:

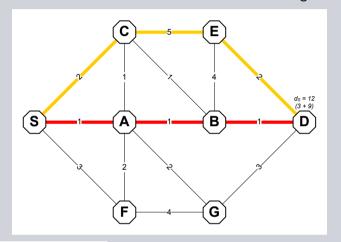
- m = 1: shortest path \subseteq set of m=1 paths with least total length
- m > 1: shortest path not necessarily part of set of m>1 paths with least total length

Sub-Optimality of Simple 2 Step Method

Best found pair of edge-disjoint paths is $d_S = 11$

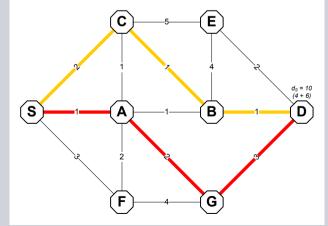


Best found pair of node-disjoint paths is $d_S = 12$

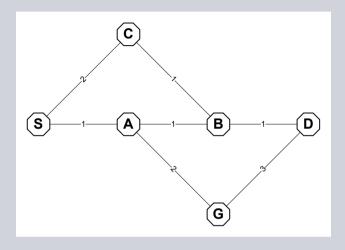


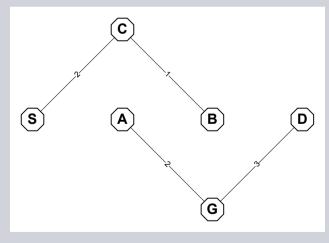
But:

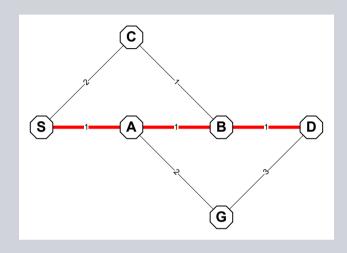
The really best pair of edge-disjoint and node-disjoint paths is $d_s = 10$.

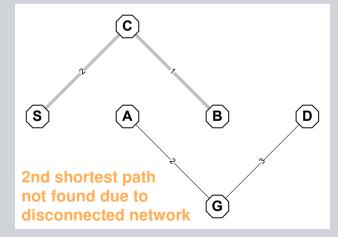


Failure to Find Existing Multiple Paths With Simple 2 Step Method









Edge-Disjoint Shortest Pair Algorithm

- 1. Find a first shortest path.
- 2. Replace each edge of the shortest path with a unidirectional edge directed towards the source and with its metric made negative.
- 3. Find a second shortest path on this modified network topology
 - need a modified Dijkstra's Algorithm that can handle loop-free directed negative edges
- 4. Transform edges to original network topology (bidirectional and positive metric)
- 5. Delete edges common to both found shortest paths and regroup remaining edges to shortest pair of edge-disjoint paths.

Modified Dijkstra's Algorithm

```
Nb(i) set of nodes in network

Nb(i) set of neighbor nodes of node i

d(i) distance from node i to source S (= sum of the link metrics from S to i)

l(ij) metric of link from node i to node j (i and j are neighbors)

P(i) predecessor of node i on path from S to i

U set of nodes for which the shortest path from S has not yet been found
```

1. Initialization

```
d(S) := 0; d(i) := l(Si) \text{ if } i \in Nb(S), d(i) := \infty \text{ otherwise;}
U := N - \{S\};
```

2. Selection of next node

```
j := j \in U with d(j) = \min d(k) \forall k \in U;

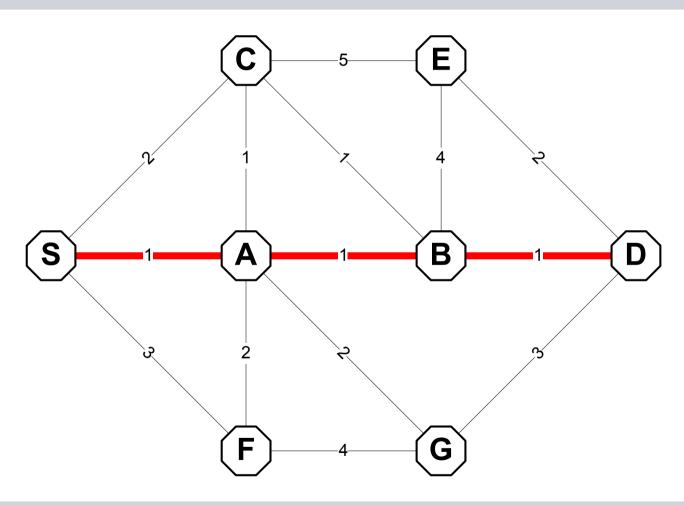
U := U - \{ j \};

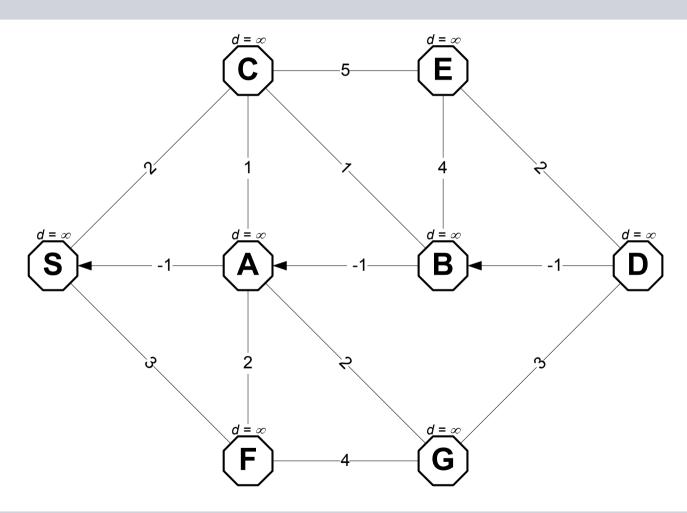
if j == D then STOP; // if U == \emptyset then STOP
```

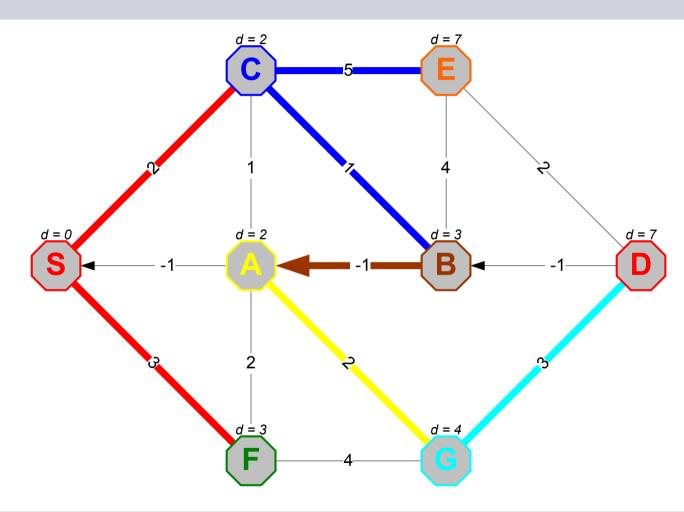
3. Update of distances and predecessors

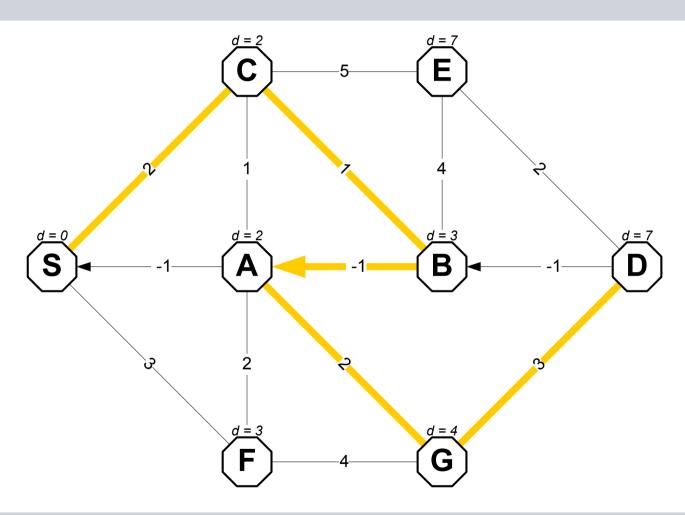
```
\forall k \in Nb(j) \text{ if } d(j) + l(jk) < d(k) \text{ then } d(k) := d(j) + l(jk);
P(k) := j;
U := U \cup \{k\};
goto 2.
```

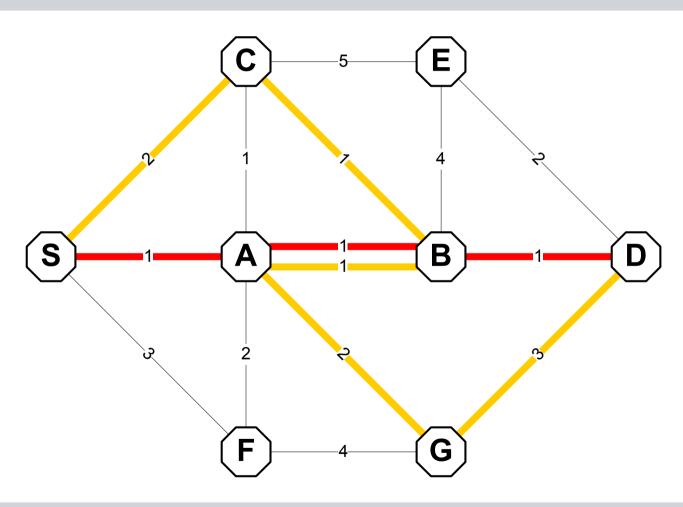
from [2] description based on [2]

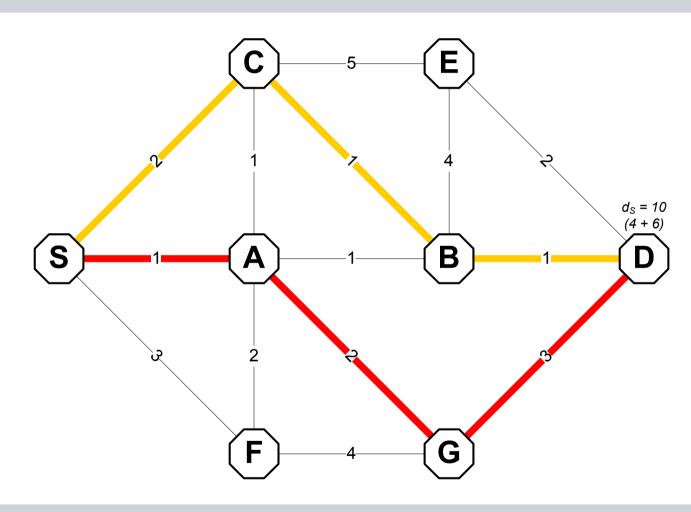






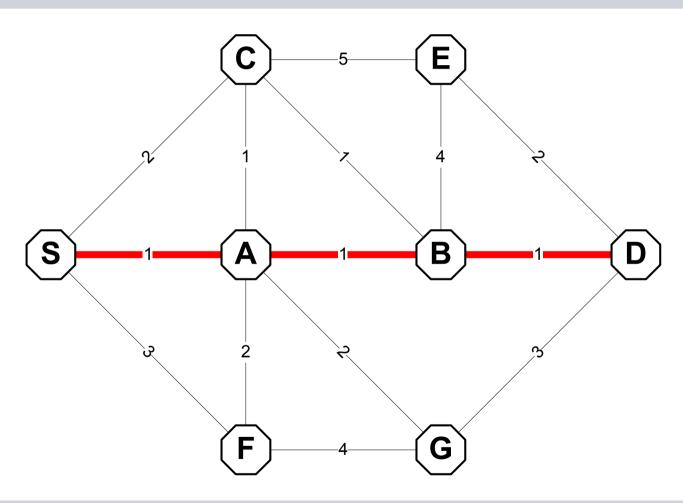


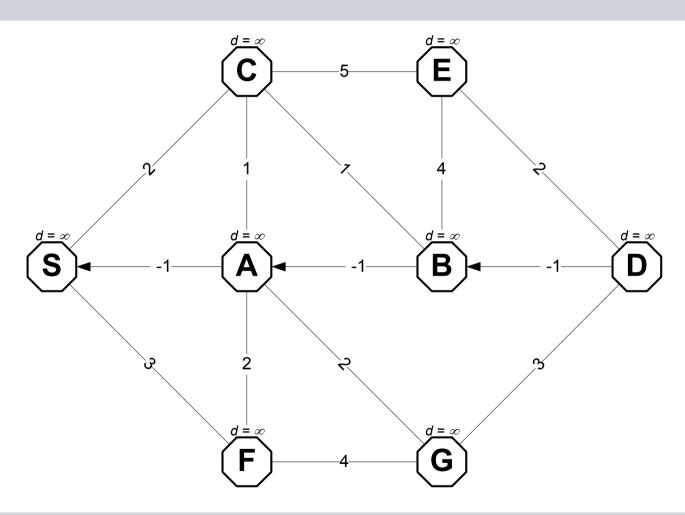


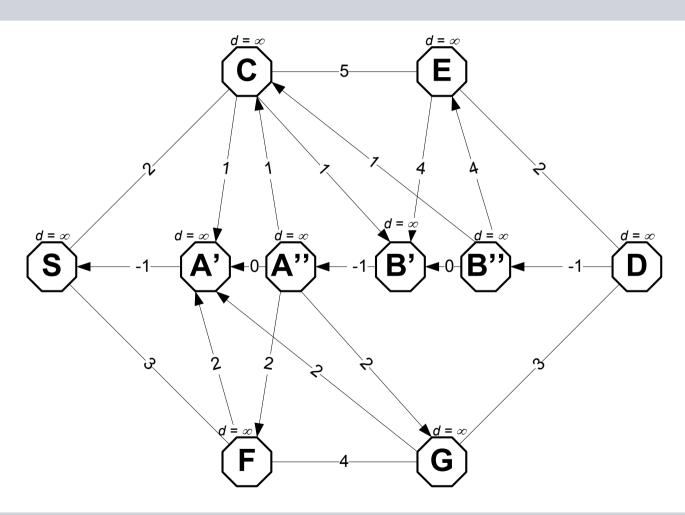


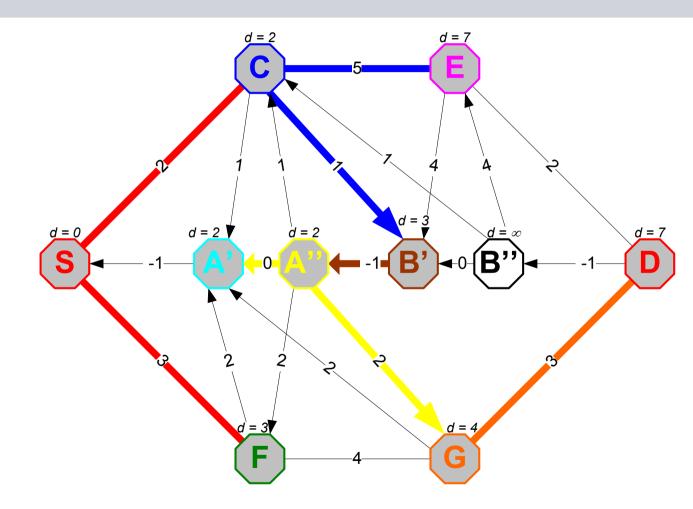
Node-Disjoint Shortest Pair Algorithm

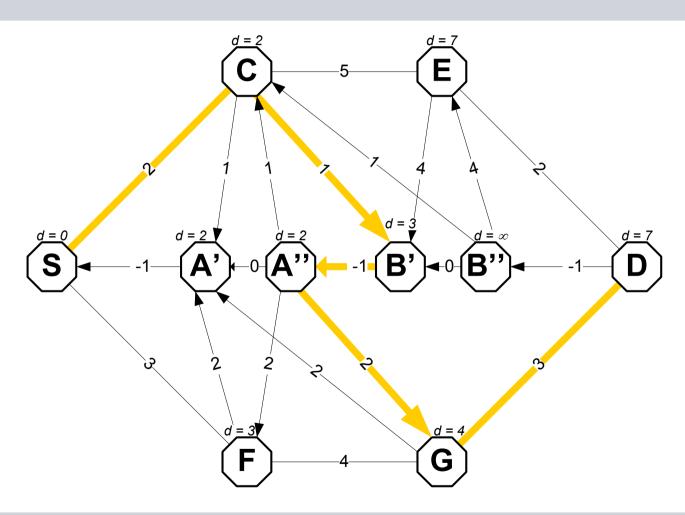
- 1. Find a first shortest path.
- 2. Replace each edge of the shortest path with a unidirectional edge directed towards the source and with its metric made negative.
- 3. Split the intermediate nodes N of the shortest path into two nodes N' and N" with the following edges:
 - connect N' with the (outgoing) unidirectional edge towards the source
 - connect N" with the (incoming) unidirectional edge directed from the destination towards N
 - connect N' and N" with a unidirectional edge with metric = 0 directed from N" towards N'
- 4. Split the edges between the intermediate nodes N of the shortest path and their neighbors into two unidirectional edges with corresponding metric:
 - connect N' with the (incoming) unidirectional edge from the neighbor towards N
 - connect N" with the (outgoing) unidirectional edge towards the neighbor
- 5. Find a second shortest path on this modified network topology.
- 6. Transform edges and split nodes back to original network topology.
- 7. Delete edges common to both found shortest paths and regroup remaining edges to shortest pair of node-disjoint paths.

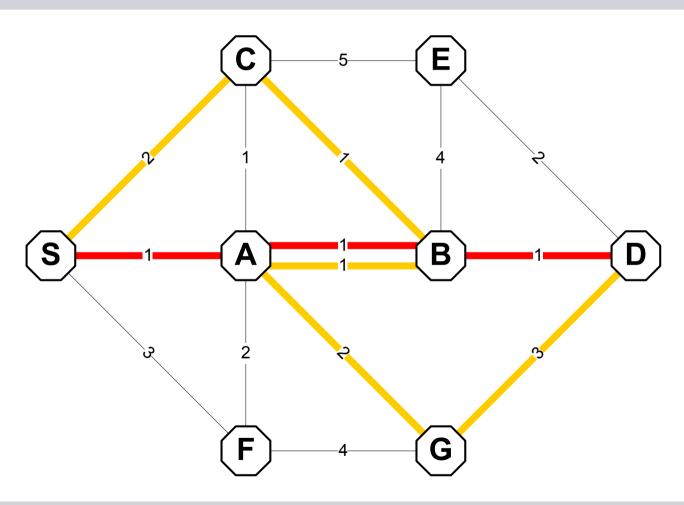


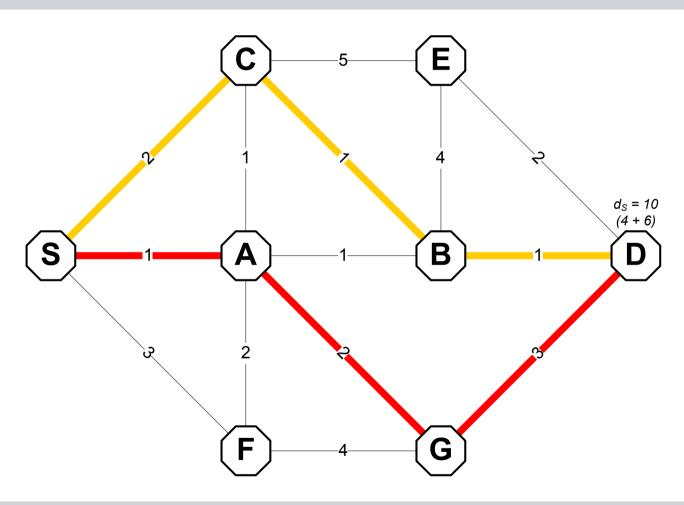












Conclusion

- multiple paths can be easily computed with already existing link-state information.
- edge-disjoint as well as node-disjoint multiple paths can be computed.
- same computational complexity as traditional shortest path link state routing.
 - traditional shortest path link state routing:
 - decentralized O(N), centralized O(N²)
 - shortest pair algorithms $O(2N+L_{SP}) \rightarrow O(N)$
 - two iterative runs of a shortest path algorithm are needed
 - needs to handle loop-free unidirectional negative edges
- finds the best (= globally optimal) set of m paths with best total metric if it exists
- well-suited for stream-oriented traffic

References

- [1] E. W. Dijkstra: "A Note on Two Problems in Connexion with Networks", Numerische Mathematik 1, pages 269-271, 1959
- [2] Ramesh Bhandari: "Survivable Networks Algorithms for Diverse Routing", Kluwer Academic Publishers, 1999
- [3] Hannes Gredler and Walter Goralski: "The Complete IS-IS Routing Protocol", Springer, 2005

SIEMENS

Thank you for your attention!