

Preemptive Transmission advantages

Is it worth the effort?

Rev. 2

Norman Finn

nfinn@cisco.com

http://www.ieee802.org/1/files/public/docs2012/new-avb-nfinn-preempt-advantage-0112-v02.pdf

Scheduling is required for real-time nets

 The real-time network scheduling model is: communicate, compute, communicate, compute, ...

- Communication occurs at specified times.
- The timing is driven by the requirements of the critical application.
- Only by strict scheduling can we guarantee, no matter what happens, that we will respond to external events in a timely manner.

Guard bands are necessary

- If an interfering frame starts transmission just before the start of a reserved time period, it can extend critical transmissions outside the window.
- Therefore, a guard band is required before the window starts, equal in size to the largest possible interfering frame.

Preemption shrinks the guard band

- If preemption is used, the guard band need only be as large as the largest possible interfering fragment, instead of the largest possible interfering frame.
- It is easy to see that the smaller the size of the timereserved windows, the larger the impact of preemption.

Some numbers

- Let us assume that the time-critical data frames are typically small, say 128 bytes.
- Let us assume that standard 1522-byte data frames are permitted for all other traffic.
- We will use the standard 20 bytes for preamble, start of frame delimiter, and inter-frame gap.
- Let us assume that preempting a frame adds only an extra 20 bytes; this is the minimum practical penalty.
- We will assume that the worst case frame size is 127 bytes, which cannot be preempted. A 128-byte frame could be preempted and separated into two 64-byte fragments.

- In the first example, the time window is sized for four 128-byte frames with a margin of 4 more such frames (50% utilization of the window).
- The basic window size is 8 * (128 + 20) = 1184 byte times.
- Without preemption, we require a (1522 + 20) byte guard band, for a total window size of 2726 bytes.
- With preemption, we require a (127 + 20) byte guard band, for a total window size of 1331 bytes.
- Thus, whatever percentage of the total bandwidth is allocated to time-critical traffic, it requires more than twice as much time (2726/1331) be reserved for that traffic if preemption is not utilized.

- 1184 byte window, including margin, plus guard band.
- Bandwidth is scaled up by increasing windows per second, not by making windows larger, because the applications determine the window size, not the available bandwidth.

- In the second example, the time window is sized for one 128-byte frame with no margin. This is perfectly possible if we assume that the switch will store a time-critical frame very briefly, and then transmit it at the appropriate moment.
- The basic window size is (128 + 20) = 148 byte times.
- Without preemption, we require a (1522 + 20) byte guard band, for a total window size of 1690 bytes.
- With preemption, we require a (127 + 20) byte guard band, for a total window size of 295 bytes.
- Thus, whatever percentage of the total bandwidth is allocated to time-critical traffic, it requires more than 5.7 times as much time (1690/295) be reserved for that traffic if preemption is not utilized.

- 148 byte window, no margin, plus guard band.
- Bandwidth is scaled up by increasing windows per second, not by making windows larger, because the applications determine the window size, not the available bandwidth.

Percent of time reserved for critical data

Link speed	Mbits/sec required for critical data alone	(no guard band)†		with preemption		no preemption	
		1184 B* window	148 B* window	1184 B* window + guard	148 B* window + guard	1184 B* window + guard	148 B* window + guard
100 Mbits	0.1	0.23%	0.12%	0.26%	0.23%	0.53%	1.32%
	1	2.31%	1.16%	2.60%	2.30%	5.32%	13.20%
	10	23.13%	11.56%	26.00%	23.05%	53.24%	132.03%
	30	69.38%	34.69%	77.99%	69.14%	159.73%	396.09%
1 Gbit	1	0.23%	0.12%	0.26%	0.23%	0.53%	1.32%
	10	2.31%	1.16%	2.60%	2.30%	5.32%	13.20%
	100	23.13%	11.56%	26.00%	23.05%	53.24%	132.03%
	300	69.38%	34.69%	77.99%	69.14%	159.73%	396.09%

^{*} Half of 1184-byte window is reserved for margin; none of 148-byte is margin.

^{† &}quot;No guard band" shows wastage from margin, preamble and inter-frame gap.

Summary

- The window size for scheduled transmissions cannot be much larger than a very few full-sized frames, or the ability to support bandwidth reserved streams is compromised. In many applications, the window size corresponds to a single frame.
- Using single frame windows, it is impossible, without preemption, to allocate even 10% of the bandwidth to scheduled transmissions.
- Scheduling transmissions requires wasting bandwidth. The amount of bandwidth wasted is less if preemption is allowed than if preemption is not possible, the difference being a factor of 1.5 to 6, depending on the size of the scheduling window.

Derivation of numbers in table

- A. "Mbits/sec required for critical data alone" is bits per second including frame from MAC addresses through CRC, but not preamble or inter-frame gap.
 - All subsequent columns show the percentage of time dedicated to the transmission windows in order to achieve the bit rate in **A**.
- B. "No guard band" columns are for the two window examples without guard band. (A / (line rate)) * ((window size) / (MAC-to-CRC bytes per window))
- C. "With preemption" columns uses same calculation as **B**, but adds 127 + 20 byte time guard band to window size.
- D. "Without preemption" columns uses same calculation as **B**, but adds 1522 + 20 byte time guard band to window size.