IEEE 802.1ASbt and Next Generation Ethernet Time Synchronization

Michael D. Johas Teener
Sr. Technical Director / Plumbing Architect
Broadcom Corporation
Agenda

• What is 802.1AS?
• What would we like to improve?
• Time synchronization unification
• Requirements for Ethernet physical layers
• Schedule & status
IEEE 802.1AS is ...

• … both a subset and superset of the IEEE 1588 “Precision Time Protocol”
 – Profile of Std 1588-2008 for Ethernet, a much simplified subset
 • Compatible enhancements for much faster clock locking and easier/ lower cost filtering at endpoints
 – … but a superset of Std 1588-2008 to support 802.11 WiFi, EPON and “coordinated shared networks”
Architectural model

Time-aware higher-layer application

ClockMaster

ClockSlave

SiteSync

LocalClock

PortSync

Media-dependent time-aware system entities

MAC relay (see IEEE 802.1Q)

PHY

MDSyncSend

MDSyncReceive

PortSyncSync

Media-independent

PHY

MAC

LLC

MD

MS

Media-dependent

ISS
IEEE 802.1ASbt

• … is a revision to 802.1AS to
 – Enhanced link support
 • Support for *all* of Ethernet
 • Other layer 2 links of interest
 – Improve performance and usability
 • Responsiveness and reliability
 • Scalable to larger / more difficult topologies
 – Enable protocol unification
 • End the 1588 vs 802.1AS vs NTP confusion
Layer 2 compatibility

• Support for link aggregation (IEEE 802.1AX)

• Work with 802.3 on multi-lane timestamp reference point

• Support for other media:
 – IEEE 1901, WiFi Direct, etc
 • (if changes are needed)
Improved scalability

• One step processing
 – For both synch and peer delay
 – Fully backward compatible with two-step

• More responsive
 – Pre select a failover Grand Master so the selection when needed is faster
 – Support both hot and cold standbys
 – Reduce BMCA convergence time for large network

• Redundancy
 – Short reconfiguration w/redundant paths when one path fails
 – Multiple active Grand Masters for the same domain
Initialization & configuration

• Aid for measurement of link delay asymmetry
 – “reverse links and remeasure”

• Reliably detect buffered repeaters
 – Need an alternate mechanism for long (fiber) links
 – MAC control frames?
Additional features

• Multiple domains with synchronization information
• Accuracy reporting
 – Each bridge to report its worst case Time Stamp accuracy
 – GM-to-ordinary-clock path synchronization reporting
Protocol unification

• Provide L2 timing information for 1588 revision
 – Merge 802.1AS and 1588 architectures

• Work with 1588 to provide end-to-end quality information
 – Common service interface and information exchange

• Move media-independent layer out of 802.1AS?
A unified architecture

Time-aware higher-layer application

ClockMaster

media independent

ClockSlave

Time-Aware System core state machine

LocalClock

Port state machine

media-dependent

Port state machine

media-dependent

PHY

MAC

LLC

MS

Media-dependent state machine

MAC relay
(see IEEE 802.1Q-2005)

ISS

MAC

PHY

Media-dependent state machine

ISS

MAC

PHY

Time of RX/TX at well-known point

media-dependent

July 2013

IEEE 802.1 Time-Sensitive Networking TG
A unified architecture

Time-aware higher-layer application

media independent

ClockMaster

Time-Aware System core state machine

LocalClock

ClockSlave

Port state machine

IPv4 shim

IPv4 media dependent

media-dependent state machine

media-dependent state machine

time of RX/TX at well-known point

IPv4 media dependent

1588 transmit

1588 receive

PHY

MAC

LLC

MS

ISS

MAC

PHY
Physical layer requirements

• Need a well known measurement point for “start of frame”
 – accuracy of PTP directly corresponds with the accuracy (repeatability/precision) of the measurements
 – symmetry between directions is important
• Check out the White Rabbit implementation for ideas
Schedule and status

• IEEE 802.1ASbt “assumptions” list almost complete
 – Drafts can start at that time
 – May depend on 1588 schedule

• IEEE 1588 revision just started
 – First web meeting next week
 – First FtF in Lemgo, Germany, Sept 27-28, 2013
 • Just after ISPCS ‘13