Discussion of Questions related to the proposed P802.1Qcb PAR:
”Short Introduction to Frame Replication and Elimination for Reliability”

Christian Boiger, Deggendorf University of Applied Sciences
Franz Joseph Goetz, Siemens AG
Markus Jochim, General Motors
Oliver Kleineberg, Hirschmann Automation & Control
Johannes Specht, University of Duisburg-Essen
Hans Weibel, Zurich University of Applied Sciences
Karl Weber, Zurich University of Applied Sciences
Representatives of Industrial Control and Automotive have shown significant interest in an IEEE standardized solution for Seamless Redundancy by:

- Repeatedly presenting use cases and market potential
- Preparing technical proposals for the integration of Seamless Redundancy techniques into IEEE 802.1
- Carefully addressing concerns related to the feasibility of the proposed solution.
- Intensively discussing these topics multiple times within the 802.1 TSN task group in the course of the last 2 years.

The purpose of this presentation to refresh the memory of all participants on the general concepts by giving a birds eye view of the proposal.
Objectives

The basic use cases are characterized by the following three requirements:

- Enable fault tolerance in applications with very tight latency constraints.
- Enable mission critical applications.
- Enable fail operational behavior:
 In case of a failure of e.g. a link or a bridge, the communication is maintained without interruption. Current mechanisms like RSTP require a certain reconfiguration time before communication is re-enabled.
Core Characteristics of the Proposal

- The proposal relies on the following core characteristics / mechanisms:
 - Sending redundant copies of messages in parallel over two paths.
 - This requires two operations:
 - Replication of messages (to “generate” redundant copies) where the two paths fork
 - Elimination of duplicates where the two paths merge.

- Path Discovery and configuration are not part of the proposal
 - This is in the scope of P802.1Qca.
Multiple industrial and automotive use cases have been shown in previous presentations.
Which applications / traffic classes require Seamless Redundancy:

- We do not require Seamless Redundancy support for:
 - Best Effort Traffic (Strict Priority Scheduling)

- We propose to provide Seamless Redundancy support for the following traffic classes:
 - Reserved Traffic (Credit based Shaper)
 - Scheduled Traffic

- Of course it is **NOT REQUIRED** to send all reserved traffic or all scheduled traffic redundantly, but it is **POSSIBLE**.

- Seamless redundancy can be used for streams that we classify to be mission critical!