Provider Bridges and MMRP
Version 02

Stephen Haddock

March 21, 2013
Overview

• MMRP creates a common, flat control plane for pruning multicast trees across Customer Networks and Provider Networks.
 – This is unlike xSTP and MVRP that use different Reserved DAs to create separate, hierarchical control planes for Customer Networks and Provider Networks.

• This works when there is a one-to-one map between a C-VID in the Customer Network and an S-VID in the Provider Network.

• It only sort-of works when there is a many-to-one map of C-VIDs to S-VID.
 – It can be made to work with actions that are local to each individual bridge (don’t require changes to the PDUs exchanged), but
 • The standard is silent on how to do this so it must be discovered by each implementer independently.
 • It requires saving Customer state in the core of the Provider Network.
 – There may be better solutions if we are willing to make changes to the standard.
1:1 mapping of C-VID to S-VID works

- 3 virtual links between C- and S-components in Provider Edge Bridge.
- All frames transmitted untagged on the virtual links.

- C-tagged MMRPDUs in Customer Network
- untagged MMRPDUs exchanged between C- and S-components.
- MMRPDUs assigned to the default VID for each virtual port.

- S-tagged MMRPDUs in Provider Network
- With 1:1 mapping of C-VID to S-VID, C-VID assignments can be independent at each Customer site.
“Bundled” Services Are Problematic:

- **2 virtual links between C- and S-components in Provider Edge Bridge.**
- **Frames are C-tagged on virtual link with multiple C-VLANs.**
- **C-tagged MMRPDUs in Customer Network**

- **C-VID = 100**
- **S-VID = 1**
- **S-VID = 23**

- “Bundled” service carries multiple C-VLANs in a single service instance with a single S-VID.

- **C-VID = 100**
- **C-VID = 200**
- **C-VID = 300**

- **If PEB does not run MMRP then will get double-tagged MMRPDUs in Provider Network**

- **If any PB runs MMRP and subsequently transmits MMRPDUs that only have S-tags, then C-VLAN information is lost by the time the multicast registrations reach the egress PEB.**

- **If PEB does not run MMRP then will get double-tagged MMRPDUs in Provider Network**

- **C-tagged MMRPDUs between C- and S- components.**
- **What does S-component do with a C-tagged MMRPDU?**
Three promising approaches

1. Provider MMRP processes double-tagged MMRPDUs, keeps attribute state per S-VID and C-VID, transmits double-tagged MMRPDUs.
 – I think this works, but keeping state per C-VID in Provider Core is ugly.

2. Provider MMPR forwards double-tagged MMRPDUs and also processes them ignoring the C-tag, keeps state per S-VID only, transmits S-tagged MMRPDUs.
 – This might work. Seems ok for join operations, but there are (solvable?) issues with leave operations.

3. MMRP at CNPs forwards and processes C-tagged MMRPDUs, keeps state per S-VID and C-VID, transmits C-tagged MMRPDU to Customer Network and S-tagged MMRPDU toward Provider Network. MMRP in Provider Core simply forward double-tagged MMRPDUs.
 – Seems promising. Keeps Customer state isolated to edge of Provider Network at the expense of special processing at CNPs.

• None of these require changes to the PDUs, protocol operations or state machines, although number 3 may work better if Provider and Customer MMRP used different reserved DAs.
1. C-VLAN state in Provider Core

- Virtually no change to standard; just an “interpretation” of the MAP context.
 - A Provider Bridge supports a MAP context of “per S-VLAN” using S-tagged MMRPDUs and a MAP context of “per S-VLAN per C-VLAN” using double-tagged MMRPDUs.

- Advantages and Disadvantages:
 - Maintaining Customer specific state in the core of a Provider Network is a significant disadvantage.
 - When the Customer state is present, it allows a Provider Bridge to filter data frames based on both S-VID and C-VID.
 - Filtering multicast using both S-VID and C-VID was requested in ballot comments during 802.1ad. The comments were rejected because there was a strong desire not to require Provider Bridges to process both tags. Having the Customer MMRP (and MVRP?) state would allow this level of filtering without requiring it.
3. C-VLAN state at Provider Edge

- Customer specific state contained to the edge of PBN by having CNPs “snoop” ingress Customer MMRPDUs.
 - “Snoop” means the original frame is forwarded, but the MMRP application also processes it and keeps C-VLAN specific state. CNPs do not generate MMRPDUs(?)
 - Applies to all Customer Network Ports at Port-Based Service Interfaces and C-tagged Service Interfaces. Other ports in Provider Network (PNPs) keep only S-VLAN specific state, and generate only S-tagged MMRPDUs

- Advantages and Disadvantages
 - No Customer specific state in the core of the Provider Network.
 - If MMRP is supported anywhere in Provider Network then must be supported at all CNPs(?)
Interoperability with current implementations

- Depends upon what current implementations do with double-tagged MMRPDUs

 A. If Provider MMRP simply discards C-tagged MMRPDUs:
 - Customer and Provider MMRP is defeated: Registration information is not propagated within Provider Network or between the Customer Network sites.

 B. If Provider MMRP simply forwards C-tagged MMRPDUs:
 - Customer MMRP works but Provider MMRP is defeated: Registration information is propagated between Customer Network sites, but not within the Provider Network.
 - Will data frames with the group address get through the Provider Network?

 C. If Provider MMRP processes MMRPDU ignoring C-tag:
 - Customer MMRP is defeated, but Provider MMRP might work.
 - Provider MMRP “registration” operations will work, but will “leave” operations?
Feedback from March 18 presentation to the Interworking Task Group

• Nobody wants Customer (i.e. per C-VLAN) state in the core of the Provider Network!!!

• Approach number 2 has issues with leave operations because it only keeps per-S-VLAN state. Can resolve by keeping per C-VLAN state but then want it only at Provider Edge so it becomes very close to approach 3.

• Approach number 3 hopefully does not need to transmit C-tagged MMRPDU toward the Customer Network (only snoops Customer MMRPDU but does not participate).

• Focus on approach #3.

• Also need to resolve the MAP Context change that occurs when have a D-bridge in a VLAN network.
Proposal (based on approach #3)

• The basic idea:
 1. C-tagged MMRPDUs forwarded through Provider Network.
 2. CNPs (at edge of Provider Network) can snoop C-tagged MMRPDUs, keep per-C-VLAN state, summarize the customer address registrations into provider address registrations that get propagated with S-tagged (not double-tagged) MMRPDUs.

• Effectively separates the MMRP control planes in the Customer and Provider Networks
 – Much like the separation of Provider and Customer xSTP and MVRP.
Back-Up Slides
What should an S-VLAN component do with MMRPDUs containing C-tags?

I. S-VLAN Component does not run MMRP
 MMRPDU is forwarded on the S-VLAN

II. S-VLAN Component runs MMRP
 MMRPDU is intercepted (relay filters; MMRP application processes)
 A. If MMRP does not handle state per C-VLAN, options are:
 1. MMRP discards the PDU
 2. MMRP forwards the PDU
 3. MMRP processes the PDU ignoring the C-tag, and generates MMRPDUs without C-tags.
 4. MMRP forwards and processes the PDU ignoring the C-tag (and generates MMRPDUs without C-tags?)
 B. If MMRP handles state per C-VLAN
 1. MMRP processes the PDU including the C-tag, and generates MMRPDUs with C-tags.
 2. MMEP forwards and processes the PDU including the C-tag (and generates MMRPDUs without C-tags?)
• 2 virtual links between C- and S-components in Provider Edge Bridge.
• Frames are C-tagged on virtual link with multiple C-VLANs.

• “Bundled” service carries multiple C-VLANs in a single service instance with a single S-VID.
Thank You