802.1ASbt presentation on
Pdelay Req storm issue

Bob Noseworthy (ren@iol.unh.edu)
University of New Hampshire’s
InterOperability Laboratory (UNH-IOL)
|[EEE 802.1 TSN TG
2014.05.14



Introduction

e Faulty Pdelay Responses (Response or
Response Follow Ups) trigger immediate
retransmission of Pdelay Req

— For persistent faults, this triggers a ‘high’ rate of
Pdelay messages (as fast as responses come back)

— This may burden a Bridge connected to both
proper and faulty link partners




The MDPdelayReq State Machine (per 802.1AS-cor)

v

RESET

initf

if (lostResponaes <
lostiResponses += 1;

*telayRe spRecsived = FALSE,;

FALSE;
aliowedloatReaponaes)

- ]
i
aMeasuringDelay = FALSE;
as(apable = FALSE;
H
ueT

vy

SEND_PDELAY_REQ

postayRegSequenceld += 1;
wPdelayReqPr = setPdelayi
dPdelayReg(PoalayReqf
pdetayintervalTimer = cumentTime;

revdMD Timestamp Receive

WAITING_FOR_PDELAY_RESP

revdM DTimestampReceive = FALSE;

{curmentTime — pdelayinternalTimer == pdelayReglnisrval) ||
cviPdelsyResp &8
ovdPdelayRespPtr->requestingPort identity clockidentity !

{revdPdelsy Res pPir-> requestingPort dentity. porih umber 1= thisPort)
{reviPdelsy RespPir-> sequenceld 1= biPdelayReqPtr-=sequenceld)

revdPdelayResp B& (rowdP
&5 (rovdPdelayReapf
{revdPdelayReap

fhiaClock) ||

WAITING_FOR_PDELAY_RESP_FOLLOW_UP

FALSE;

(=

(currentTime — pdelayi nervalTimer >
pdelzyReqinterval) || (rewdPdelayResp &8
(rovdPdetayRes pPi-=sequenceld
P delayRegPir-=ssquenceld))

revdP delayRespFolliowllp
xPd

(rovdPdetayis

rovdPe

e Focus is on the
transitions to the
Reset state from:

— WAITING_FOR_PDELA
Y RESP

— * And

— WAITING_FOR_PDELA
Y RESP_FOLLOW _UP




RESET to PDELAY_REQ states

— v

RESE]D

mitFoeday e spiRleoeved = FALSE;
rovdiFdetaymean = FAL SE;
T { hoest Ml oS eeg. <= mlowwesdll O TR eoning &3

oaiFeanonass += 1)

o ]

{
aMeasuringDelay = FALSE;
asCapable = FALSE;

I
A

D FOELAY _RIEC

piela yRegSequenceld += 1;
tPdelayRegPt = sstPdelayReg();
tPde layR egtPdelayRegPir);
pislzyiniervalTimer = cumanTime;

The following as tutorial:

e Upon entering the RESET
state, the state actions
are executed and then
immediately
(unconditionally ‘UCT’)
transition to
SEND_PDELAY REQ

e Anew Pdelay Req frame
is sent immediately upon

entering
SEND _PDELAY_REQ




WAITING_FOR_PDELAY_RESP to RESET

(currentTime — pdelaylnterval Timer >= pdelayReqlnterval) ||
(rcvdPdelayResp &&

( (rcvdPdelayRespPtr->requestingPortldentity.clockldentity != thisClock) ||
(rcvdPdelayRespPtr->requestingPortldentity.portNumber != thisPort) ||
(rcvdPdelayRespPtr->sequenceld != txPdelayReqPtr->sequenceld) ) )

e Timeout occurs so go to reset (this is fine); or,

e rcvdPdelayResp && not thisClock, not thisPort, or
rcvdPdelayRespPtr->sequenceld !=txPdelayReqPtr-
>sequenceld

e |Inthis latter case, as soon as an errored Pdelay Resp is
received, a fresh Pdelay Req frame will be sent, potentially
triggering a storm of invalid Pdelay_Resp and Pdelay Req
retransmissions

* Transition to WAITING_FOR_PDELAY_RESP_FOLLOW _UP is
conditioned on rcvdPdelayResp with proper thisClock,
thisPort and seq. Id.




WAITING_FOR_PDELAY RESP_FOLLOW _UP to RESET

(currentTime — pdelaylntervalTimer >=
pdelayReqlnterval) || (rcvdPdelayResp &&
(rcvdPdelayRespPtr->sequenceld ==
txPdelayReqPtr->sequenceld))
e Timeout occurs so go to reset (this is fine); or,
e (rcvdPdelayResp && (rcvdPdelayRespPtr->sequenceld ==
txPdelayReqPtr->sequenceld))

— Causes transition to RESET if a 2nd Pdelay _Resp is received with same
Seq.ld

* |n this latter case, as soon as an errored Duplicate Pdelay Resp is
received, a fresh Pdelay_Req frame will be sent, potentially
triggering a storm of invalid Pdelay_Resp and Pdelay_Req
retransmissions

 Transition to WAITING_FOR_PDELAY INTERVAL TIMERis
conditioned on rcvdPdelayRespFollowUp with proper
sourcePortldentity (thisClock, thisPort) and seq. Id (if not received,
then the timeout condition will take us back to RESET)




Proposed solution

e Option 1: Change the transition from RESET to
SEND_PDELAY_REQ from “UCT” to  “currentTime —
pdelaylntervalTimer >= pdelayReqlnterval”

— In the event that a timeout occurred (causing the
transition to RESET) then this condition will already be true
(allowing for immediate transition to SEND_PDELAY_REQ)

— In the case of an errored frame, this will cause a delay
before the next Pdelay_Req is sent

e Option 2: Make all transitions INTO the RESET state
conditioned only on “currentTime —
pdelaylntervalTimer >= pdelayReqlnterva

e Option 1is preferred (see next slide)

I”




What happens in the RESET state

RESET

initPdelayRespReceived = FALSE;
rcvdPdelayResp = FALSE;
if (lostResponses <= allowedLostResponses)

lostResponses += 1;
else

{
isMeasuringDelay = FALSE;

asCapable = FALSE;
}

e Option 1is preferred, as Option 2 will delay setting
asCapable to FALSE upon receipt of some errored
Pdelay exchanges

— note, ‘today’ there is still a delay in some error cases, such
as a Pdelay_Resp_Follow_ Up with improper Seq.Id




Summary

* Faulty responses trigger flood of frames on a link
at the rate of the Pdelay responses

 To introduce delay and force Pdelay Req
messages to be paced at their intended rate,

change either:

— the transition from RESET to SEND _PDELAY_REQ from
“UCT" to  “currentTime — pdelaylntervalTimer >=

pdelayReqlnterval”

Or,

— remove all conditions on the transitions into Reset
leaving only “currentTime — pdelaylntervalTimer >=
pdelayReqlnterval”




	802.1ASbt presentation on�Pdelay_Req storm issue
	Introduction
	The MDPdelayReq State Machine (per 802.1AS-cor)
	RESET to PDELAY_REQ states
	WAITING_FOR_PDELAY_RESP to RESET
	WAITING_FOR_PDELAY_RESP_FOLLOW_UP to RESET
	Proposed solution
	What happens in the RESET state
	Summary

