Description of Explicit Topologies

János Farkas
janos.farkas@ericsson.com

March 18, 2014
Format A: Port ID Based

- This is the format of 802.1Qca D0.6
- Format A is based on listing Bridge Ports that are part of the topology, where a Bridge Port is identified by an IS-IS System ID, Circuit ID tuple
- The connectivity provided by a Bridge Port is included in the topology if the Port ID is included; therefore, each bridge or station connected to the same LAN is also included in the topology
- Format A only requires ordering for a loose hop of a p2p path that mixes loose and strict hops
 - Ordering is not required either in fully specified or in completely loose cases
 - A tree (mp2mp) is always either fully specified or completely loose
- Otherwise, Format A does not require any particular ordering of the hops, but ordering is allowed in case of p2p paths
- Tie-breaking for a link: use the numerically lower System ID
Format B: Order Based

- Format B is based on the ordered list of Nodal IDs for describing all kinds of topologies.
- A chain (or ear) out of the topology is described by an ordered list:
 - A p2p path is a single chain
 - The smallest chain is a single link
- Arbitrary order between chains
- Each node involved in the topology appears at least once in the descriptor.
- The System ID is the Nodal ID for IS-IS.
Parallel Links

› Port ID has to be also supported in case of Format B in order to be able to distinguish parallel links between a pair of bridges

› Therefore, the same TLV structure can be used for both formats
Descriptor

- 802.1Qca D0.6

<table>
<thead>
<tr>
<th>Type</th>
<th>Length</th>
<th>Format ID</th>
<th># VLAN Tags</th>
<th>VLAN Tag 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLAN Tag n</td>
<td></td>
<td>Hop sub-TLV 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hop sub-TLV 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hop sub-TLV i</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hop sub-TLV m</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- This ‘translated’ version is used in the following:

<table>
<thead>
<tr>
<th>System ID 1, Circuit ID 1; Flags Set</th>
</tr>
</thead>
</table>
System ID 2, Circuit ID 2; Flags Set
...
System ID i, Circuit ID i; Flags Set
...
System ID n, Circuit ID n; Flags Set

- Circuit ID may not be present

1-bit Flags:
- Circuit
- ECT
- Loose
- Exclude
- End
- Root
- MRT Root
- GADAG Root
Example Network

![Network Diagram]

- Node 11
- Node 22
- Node 33
- Node 44
- Node 55
- Node 66
- Node 77
- Node 88

(topology description) 2014-03-18 Page 6
A Fully Specified Spanning Tree

Format A
arbitrary order

11, 2; Circuit, End
11, 3; Circuit, End
44, 3; Circuit, End
55, 1; Circuit, End
88, 1; Circuit, End
33, 4; Circuit
66, 4; Circuit

77 bytes

Format B
exact order for each chain

| 22 |
| 11; End |
| 33 |
| 66 |
| 44; End |
| 33 |
| 55; End |
| 66, 4; Circuit |
| 77 |
| 66 |
| 88; End |

81 bytes

Note that a tree is just a loop-free network graph. Root only matters for computation. Root does not matter any more when just describing a fully specified tree.

Circuit ID has to be used for parallel links in every case.
A Fully Specified Spanning Tree Format A Peculiarities

Format A
arbitrary order

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 2; Circuit, End</td>
<td>11, 3; Circuit, End</td>
<td>44, 3; Circuit, End</td>
</tr>
<tr>
<td>55, 1; Circuit, End</td>
<td>88, 1; Circuit, End</td>
<td>33, 4; Circuit</td>
</tr>
<tr>
<td>66, 4; Circuit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

77 bytes

Tie-breaking looser bridges (e.g. 22 and 77) may not appear in the descriptor

Lost Circuit ID tie-break against 11 for the 11-22 link

Lost Circuit ID tie-break against 66 for the 66-77 link

The order applied in this presentation:
Ascending in System ID, Circuit ID such that End Points are first listed
Each bridge can be listed if that is preferred

Redundant items do not cause any issue
Exact order for each chain

Arbitrary order between chains

It is the task of the entity describing the tree to figure out the chains
- e.g. longest possible chains for least bytes descriptor

Beginning of new chain is indicated by a System ID that already appears in a former chain
A Completely Loose Tree

Note that order does not matter in either format.

Format A

11; Loose, End
44; Loose, End
88; Loose, End
66; Loose, Root

28 bytes

Format B

11; Loose, End
44; Loose, End
66; Loose, Root
88; Loose, End

28 bytes

Root matters because the bridges have to compute.
A Fully Specified P2P Path

Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths: Exact order has to be followed if Circuit ID is not present.
A Mixed P2P Path (Mixed Strict and Loose Hops)

Format A
- exact order for loose hop
- arbitrary order otherwise

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>2</td>
<td>Circuit</td>
<td>End</td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>6</td>
<td>Circuit</td>
<td>Loose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>3</td>
<td>Circuit</td>
<td>End</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33 bytes

Format B
- exact order

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>6</td>
<td>Circuit</td>
<td>Loose</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End</td>
</tr>
</tbody>
</table>

39 bytes

A loose hop is related to the previous hop; therefore, order matters!

Circuit ID has to be used for parallel links in every case.
Format A
exact order for loose hop
arbitrary order otherwise

<table>
<thead>
<tr>
<th>Circuit ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 2</td>
<td>Circuit, End</td>
</tr>
<tr>
<td>66, 6</td>
<td>Circuit, Loose</td>
</tr>
<tr>
<td>88, 3</td>
<td>Circuit, End</td>
</tr>
</tbody>
</table>

33 bytes

<table>
<thead>
<tr>
<th>Circuit ID</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>11, 2</td>
<td>Circuit, End</td>
</tr>
<tr>
<td>88, 3</td>
<td>Circuit, End</td>
</tr>
<tr>
<td>22, 1</td>
<td>Circuit</td>
</tr>
<tr>
<td>66, 6</td>
<td>Circuit, Loose</td>
</tr>
<tr>
<td>77, 6</td>
<td>Circuit</td>
</tr>
</tbody>
</table>

55 bytes

a loose hop is related to the previous hop; therefore, order matters!

Each bridge can be listed if that is preferred

Lost Circuit ID tie-break against 11 for the 11-22 link
Lost Circuit ID tie-break against 66 for the 66-77 link
Format A (802.1Qca D0.6) allows exact order of System IDs for p2p paths: Exact order has to be followed if Circuit ID is not present.
A GADAG Example

Network Topology

GADAG
GADAG Root = 11
GADAG Description

Format A
arbitrary order

11, 2; Circuit, GADAG Root
22, 2; Circuit
22, 3; Circuit
22, 4; Circuit
33, 1; Circuit
44, 3; Circuit
55, 1; Circuit
66, 2; Circuit
66, 4; Circuit
66, 5; Circuit
77, 1; Circuit
77, 3; Circuit
88, 2; Circuit

143 bytes

Format B
specific order

11; GADAG Root
22
33
11; GADAG Root
22
44
66
77
55
33
66
88
77
22
66
66
33
77
33

133 bytes
Each edge of the graph is specified by the outbound port.

Arbitrary order can be applied; therefore,

The graph can be described bridge by bridge and port by port.
Specific order required
Each ear of the GADAG is described by an ordered list of System IDs
Arbitrary order among ears (e.g. comp order)
A new ear begins and ends with a System ID that is already in the list
ISO 10589: A shared media LAN is identified by the System ID of the Designated Intermediate System (DIS) and by a Pseudonode ID, which is a Circuit ID local to the DIS.
If a shared media LAN is part of an explicit tree, then each bridge connected by that particular LAN is also part of the tree.

ISO 10589: A shared media LAN is identified by the System ID of the Designated Intermediate System (DIS) and by a Pseudonode ID, which is a Circuit ID local to the DIS.

Not listed because added by the inclusion of the shared media LAN.
Shared Media LAN Example Format \(B \) Peculiarities

- Exact order for each chain
- Arbitrary order between chains
- Beginning of new chain is indicated by a System ID that already appears in a former chain
- Circuit ID to be used for Pseudonode
- Taking part in a chain via the shared media LAN is described by being connected to the Pseudonode

Format B

exact order for each chain

<table>
<thead>
<tr>
<th>Chain 1</th>
<th>Chain 2</th>
<th>Chain 3</th>
<th>Chain 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>11; End</td>
<td>22, 4; Circuit</td>
<td>66</td>
<td>88; End</td>
</tr>
<tr>
<td>33</td>
<td>44; End</td>
<td>33</td>
<td>77</td>
</tr>
<tr>
<td>55; End</td>
<td>22, 4; Circuit</td>
<td>66</td>
<td>88; End</td>
</tr>
<tr>
<td>85 bytes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
802.1Qca is not about p2p paths
Mixing strict and loose hops in an explicit tree makes it too complicated
Mixing strict and loose hops in a p2p path may be not that useful
Order is only mandatory for a loose hop, because it is related to the preceding hop
Ordering is unnecessary if it is not allowed to mix strict and loose hops
Programming

- **Format A**
 - **Easy**
 - **PCE**
 - e.g. go through the topology sequentially per bridge per port
 - **Bridge**
 - Just include the hops to the topology

- **Format B**
 - **More complex**
 - **PCE**
 - Longest possible chains to be find
 - Encode the chain as ordered list
 - **Bridge**
 - It has to be detected when a chain begins and ends
 - Worst case: each link is an individual chain
Summary

› The original intention determines the pros and cons
 – Format A: describe a generic graph, network topology
 – Format B: describe a p2p path

› **Format A**
 › Easier to program
 › Shared media LAN
 – Simple, in-line with IS-IS
 › Size
 – Can be 2 bytes smaller per hop

› **Format B**
 › Easier to read by human
 › Shared media LAN
 – Messy
 › Size
 – 2 bytes larger in worst case (single hop chain)

› Same TLV structure can be used for the two formats