InfiniBand Credit-Based Link-Layer Flow-Control

802.1 DCB TG - IEEE 802 Plenary

March 2014
Introduction to InfiniBand Credit Based Flow Control

- “Credit” Represents Receiver Commitment
- In-band Delivery of Flow Control Credits
- Requires Accurate Accounting “in-sync” with Data Transmission
 - vs. pause/xon-xoff schemes

- Primary Challenge is Resiliency
 - Loss of Flow Control Updates
 - Loss of Data Packets

- “Absolute” Credits
 - vs. “Incremental”
 - “Credit Limit” – total allowed since initialization of the link

- InfiniBand Specification Vol.1 Section 7.9
Principles of Operation (Simplified)

- **Receiver (per VL)**
 - Tracks **ABR** – (Adjusted) Blocks Received
 - Counts total blocks received since initialization of the link
 - Updated (incremented) for every received packet
 - Calculates “Credit Limit” (**FCCL**)
 - FCCL is ABR + "Available Buffer Space"
 - FCCL Sent to Transmitter via Credit Packets

- **Transmitter**
 - Tracks **FCTBS** – Total Blocks Sent
 - Counts total blocks sent since initialization of the link
 - Updated (incremented) for every sent packet
 - Receives FCCL in Credit Packets
 - Packet Transmission is Allowed if FCTBS+"Packet Size" is smaller than or equal last received FCCL
Principles of Operation (cont’d)

Receiver

- **Initialization of the Link**
- **Blocks already delivered onwards** ...
- **Blocks in Receiver’s Buffer**
- **Available Buffer Size**
- **Receiver’s Total Buffer Size**
- **Blocks on the wire**
- **“Credits”** (FCCL - FCTBS)
- **FCTBS** (Total Blocks Sent)
- **ABR** (Total Blocks Received)
- **FCCL** (Credit Limit)

Transmitter
Resiliency to Transient Failures

- **Absolute Credits**
 - Inherently Resilient to Loss of Credit Packet

- **Algorithm Relies on Consistent View of “Total Bytes Sent”**
 - FCTBS (on transmitter) must remain equal to ABR+Blocks_on_the_wire (on the receiver).
 - Disrupted by Loss of Data Packet
 - …ABR falls behind
 - Solution: Periodically Force Sync to Guarantee Consistent View
 - FCTBS Piggybacked in (reverse) Credit Packet
InfiniBand Credit Based Flow Control (with Resiliency)

- **Receiver (per VL)**
 - Tracks **ABR** – (Adjusted) Blocks Received
 - Counts total blocks received since initialization of the link
 - Updated (incremented) for every received packet
 - **Override with FCTBS value reported by Transmitter**
 - piggybacked in received (reverse) Credit Packet
 - Calculates “Credit Limit” (**FCCL**)
 - FCCL is ABR + ”Available Buffer Space”
 - FCCL Sent to Transmitter via Credit Packets

- **Transmitter**
 - Tracks **FCTBS** – Total Blocks Sent
 - Counts total blocks sent since initialization of the link
 - Updated (incremented) for every sent packet
 - **FCTBS is sent to Receiver**
 - piggybacked in (reverse) Credit Packet
 - Receives FCCL in Credit Packets
 - Packet Transmission is Allowed if FCTBS+”Packet Size” is smaller than or equal last received FCCL
InfiniBand Credit Based Flow Control (cont’d)

- **Flow Control Blocks**
 - 64B (working towards configurable size)
 - Packets “consume” an integer number of blocks

- **Credit Updates (per VL)**
 - Every 64KB or before

- **12 bit fields**

- **Modulo Arithmetic**
 - Max 2048 Credits
 - 128KB at 64B blocks
Failsafe Mechanisms (non-transient failures)

- **Receiver Detected**
 - Buffer Overrun Threshold Exceeded

- **Transmitter Detected**
 - Flow Control Update Monitor

- **Lync Resync**
 - Triggers Initialization of the Credit Accounting
Priorities, Traffic Classes, Queues and Buffers

- **InfiniBand Service Levels (SLs) and Virtual Lanes (VLs)**

 - SL is conceptually equivalent to 802.1 Priority
 - Indicates requested level of service across the InfiniBand L2
 - 16 SLs (15 for data, 1 for management traffic)

 - VL is somewhat equivalent to 802.1 Traffic Class (i.e. Transmit Queue)
 - Number of VLs supported is an implementation choice
 - SL to VL mapping on Transmit
 - Credit Based Flow Control is per VL
 - Prevents HOL Blocking
 - InfiniBand Mandates Separate Receive Buffering Resources per VL
 - Transmitter Queue -> Dedicated Buffer on Receiver
 - Both SL and VL are carried on the packet
 - Required for proper credit accounting
 - 802.1 is different on this regard - Receiver is unaware of Transmitter Queue
Priorities, Traffic Classes, Queues and Buffers (cont’d)

- Ethernet Receiver doesn’t know which Transmitter Queue a frame is coming from
 - No way to allocate dedicated Receiver Buffer for Transmitter Queue
 - Independent Mapping at Receiver of Prio to Buffer

- Can’t do “per-Transmitter-Queue” Credit Based Flow Control

- Per- Priority (Credit Based) Flow Control
 - Much different than Per-Priority Pause (802.1Qbb)
 - May result in Transmitter Queue HOL Blocking

- Solution Space
 - to be discussed on a separate presentation
Thank You