Data Modelling: IEEE 802.1 Configuration and Control With NETCONF/YANG

Peter Jones
Cisco Systems
Version 1
May 11, 2014
Author Assumptions and Disclaimer

Assumptions

• The goals of the Time-Sensitive Network Task Group (and other IEEE groups) should include
 ➢ Define simply and clearly the primitives (aka building blocks) required to operate and manage implementations of our standards.
 ➢ Simply support multiple ways to encode and transport this data based on system scale and environment.

Disclaimer

• Today the author knows a lot more about SNMP/SMI, than about NETCONF/YANG, but he knows where he needs to invest.
Why is this important?

• IEEE 802.1 standards define a formal management interface using SNMP SMIv2 definitions (i.e. a MIB).
 ➢ This is often a poorly understood part of the project, done towards the end and feels like guild knowledge, e.g. *All those who understand MIBs, please take one step forwards.*

• Many of our standards also define peer to peer communication protocols (e.g. SRP).
 ➢ Because our standards are used all over the industry, these protocols can end up as an uncomfortable compromise between conflicting needs (e.g. scale, footprint, reach, simplicity, etc)

• This presentation is focused on TSN right now, but has broad applicability throughout IEEE 802.
What could we do different?

- Move away from specific syntax and transport, and focus on the semantics and operations.
- Said another way
 - spend more time on what we need to get done.
 - less time on the exact details of the encoding and transport of messages.
- How to tackle PICs and interoperability?
 - Briefly covered later in the deck, but this is not as hard as you might think.
TSN needs
What do we need to update/extend/replace?

• The MIB (formal programmatic interface) used by an NMS device (aka controller in today’s terms) to operate (e.g. configure/ monitor/ troubleshoot) TSN devices
 ➢ (see FCAPS link for good background definitions)

• SRP for UNI /NNI signaling for stream control between TSN devices, including:
 ➢ stream (or streams for in network protection) establishment
 ➢ resource reservation

• PCEP (or PCEP like) protocol to/from PCE-like devices offering static or dynamic network planning services
 ➢ This is an external function that maps service needs to network resources.

• All of these need to access and manipulate the same data store in the same network elements.
Past Practice?

- If we operated as normal, we would
 - Define/extend the MIB (SMI format) for configuration, operational state and statistics reporting.
 - Define/extend TLVs for service signaling in a set of protocols (e.g., SRP, IS-IS, PCEP, maybe RSVP-TE) depending on the network type and scope.
 - It’s my belief that we would end up redefining the same basic data in a bunch of different formats.
 - Deal with MIB/TLV inconsistencies and mapping/translation between signaling protocols defined in various SDOs (e.g. IEEE, IETF, etc).
Best Practice?

• I propose that we investigate data modelling languages available today that meet the following requirements:
 ➢ Allow high level description of data models.
 ➢ Have (or are gaining) broad industry and standards organization support.
 ➢ Allow for multiple data encoding schemes.
 ➢ Allow for multiple transport protocol mappings.
Industry Movement
IETF moving from SNMP to NETCONF/YANG

- NETCONF/YANG replace SNMP/SMI.

- What’s NETCONF? ([wikipedia link](https://en.wikipedia.org/wiki/NETCONF))
 - NETCONF defines the operations, messaging and transport for managing network devices.
 - Defined in RFC 6241 ([link](https://datatracker.ietf.org/doc/html/rfc6241))
 - RFC 6244 is an excellent primer ([link](https://datatracker.ietf.org/doc/html/rfc6244))

- What’s YANG? ([wiki link](https://www.yangtools.com/what-is-yang/))
 - YANG is a data modeling language used to model configuration and state data (includes operational state and statistics)
 - Defined in RFC 6020 ([link](https://datatracker.ietf.org/doc/html/rfc6020))
 - Developed for NETCONF, but not limited to NETCONF

- Recent activity
 - All new IETF work that needs configuration is strongly encouraged to use NETCONF/YANG ([IESG statement link](https://datatracker.ietf.org/doc/html/draft-ietf-netmod-netconf-yang-iesg-statement-00))
 - The NETCONF Data Modeling Language (netmod) WG is actively defining YANG versions of the basic SNMP MIBs (e.g. system, interfaces, IP, routing, etc.).
YANG and SMI mapping: Some RFC6021 examples

<table>
<thead>
<tr>
<th>YANG type</th>
<th>Equivalent SMIv2 type (module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>counter32</td>
<td>Counter32 (SNMPv2-SMI)</td>
</tr>
<tr>
<td>zero-based-counter32</td>
<td>ZeroBasedCounter32 (RMON2-MIB)</td>
</tr>
<tr>
<td>counter64</td>
<td>Counter64 (SNMPv2-SMI)</td>
</tr>
<tr>
<td>zero-based-counter64</td>
<td>ZeroBasedCounter64 (HCNUM-TC)</td>
</tr>
<tr>
<td>gauge32</td>
<td>Gauge32 (SNMPv2-SMI)</td>
</tr>
<tr>
<td>gauge64</td>
<td>CounterBasedGauge64 (HCNUM-TC)</td>
</tr>
<tr>
<td>object-identifier</td>
<td>-</td>
</tr>
<tr>
<td>object-identifier-128</td>
<td>OBJECT IDENTIFIER</td>
</tr>
<tr>
<td>date-and-time</td>
<td>-</td>
</tr>
<tr>
<td>timeticks</td>
<td>TimeTicks (SNMPv2-SMI)</td>
</tr>
<tr>
<td>timestamp</td>
<td>TimeStamp (SNMPv2-V2)</td>
</tr>
<tr>
<td>phys-address</td>
<td>PhysAddress (SNMPv2-TC)</td>
</tr>
<tr>
<td>mac-address</td>
<td>MacAddress (SNMPv2-TC)</td>
</tr>
<tr>
<td>xpath1.0</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YANG type</th>
<th>Equivalent SMIv2 type (module)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ip-version</td>
<td>InetVersion (INET-ADDRESS-MIB)</td>
</tr>
<tr>
<td>dscp</td>
<td>Dscp (DIFFSERV-DSCP-TC)</td>
</tr>
<tr>
<td>ipv6-flow-label</td>
<td>IPv6FlowLabel (IPV6-FLOW-LABEL-MIB)</td>
</tr>
<tr>
<td>port-number</td>
<td>InetPortNumber (INET-ADDRESS-MIB)</td>
</tr>
<tr>
<td>as-number</td>
<td>InetAutonomousSystemNumber (INET-ADDRESS-MIB)</td>
</tr>
<tr>
<td>uri</td>
<td>Uri (URI-TC-MIB)</td>
</tr>
</tbody>
</table>
IF-MIB SMI and YANG extracts

IfEntry ::= SEQUENCE {
 ifIndex InterfaceIndex,
 ...
 ifType IANAIfType,
 ...
}

IfXEntry ::= SEQUENCE{
 ifName DisplayString,
 ...
}

ifName OBJECT-TYPE
SYNTAX DisplayString
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The textual name of the interface."
 ::= { ifXEntry 1 }

ifType OBJECT-TYPE
SYNTAX IANAIfType
MAX-ACCESS read-only
STATUS current
DESCRIPTION "The type of interface."
 ::= { ifEntry 3 }

container interfaces-state {
 config false;
 description "Data nodes for the operational state of interfaces."
 list interface {
 key "name";
 description "The list of interfaces on the device."
 leaf name {
 type string;
 description "The name of the interface."
 reference "RFC 2863: The Interfaces Group MIB - ifName";
 }
 leaf type {
 type identityref {
 base interface-type;
 }
 mandatory true;
 description "The type of the interface."
 reference "RFC 2863: The Interfaces Group MIB - IfType";
 }
 }
}
OpenDaylight & Yang

- **OpenDaylight** is a Linux Foundation collaborative project for building SDN infrastructure.

- They gave a presentation to IETF 88 on:
 - their overall goals
 - Model Driven Service Abstraction Layer
 - A set of asks for the netconf and netmod WGs.

- I believe that moving towards defining functionality based on models is one of their key elements.

- I believe that we can use this trend to our advantage and head down the same path
YANG/NETCONF options today. (standard or draft)

- **Transports** (not including Historic)
 - SSL
 - TLS
 - RESTCONF

- **Encodings**
 - XML
 - JSON
 - EXI *(Efficient XML Interchange)*

- It seems like there will be more to come.
What’s EXI - Efficient XML Interchange?

• It’s a World Wide Web Consortium (W3C) standard designed to be a
 ➢ Very compact representation for XML intended to simultaneously optimize encode/decode time and performance and message size (link)

• Main design goals (link)
 ➢ General:
 ➢ Minimal:
 ➢ Efficient:
 ➢ Flexible:
 ➢ Interoperable:

• EXI as an encoding may be a good fit for smaller systems.
 ➢ There are number of open source implementations available, including EXIfficient, OpenEXI and EXIP.
Moving Forward?
Next Steps – High Level

• My proposal is that we:
 ➢ Adopt a consistent way to define data models (objects + operations) for our standards.
 ➢ Spend most effort deciding what needs to get done, not how to encode or transport it.

• If we agree on this, or decide that it’s worth pursuing further then:
 ➢ Find the set of people most interested in following up.
 ➢ Start to work on the tasks proposed on the next slide.
Next Steps - Details

• Push for 802.1 as a whole to move to replace SNMP/SMI with NETCONF/YANG
 ➢ There are mechanical translators (e.g., web libsmi) for converting SMI MIB to YANG model
 ➢ Many common SNMP tools/companies (e.g., EMENATE, WebNMS, MG-SOFT) already have NETCONF/YANG support

• Pick at least one preferred transport and encoding, SSL/XML align to IETF.
 ➢ Investigate other options as needed (e.g., L2 transport protocol, EXI)

• Develop YANG models for
 ➢ Interface to NMS/controller
 ➢ Interface to PCE
 ➢ Peer to Peer signaling (I think this is the biggest stretch, but ATM ILMI using SNMP is one existence proof)
Thank you.