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Motivation

 Ingress policing requirements based on the traffic class
● Stream-based token bucket may be appropriate for traffic classes 

with credit-based shaping and “best effort” traffic (Markus 
Jochim, IEEE 802.1 TSN Plenary, Dallas, TX, November 2013 –
examples and evaluation already presented)      
http://www.ieee802.org/1/files/public/docs2013/tsn-jochim-ingress-policing-1113-v2.pdf

● Urgency-based scheduler (UBS): Ingress policing is a built-in 
property of the shaper (automatic threshold enforcing at egress)
http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

What about the other traffic classes?
● Time-aware shaper: bandwidth only; no policing in time domain is 

currently defined – examples to follow in this presentation
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About this slides

Content
 The next slides show multiple error cases and possible 

countermeasures, i.e. mechanisms of ingress policing for 802.1Qbv.

 The mechanisms are far from being complete – more could be done on 
layer 2 (protection of 802.1CB, …).

 The mechanisms are not mapped on yet known/standardized 
mechanisms but focus on what appears reasonable on layer 2 w.r.t. 
802.1Qbv. Mapping can be discussed at the end of this slide set.

Note on Cut-through and Store & Forward

 The figures in this slide set show cut-through behavior for simplicity. 
The explained mechanisms are applicable for both, store & forward 
and cut-through bridges.
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More about this slides

Goals, Anti-Goals and Assumptions

 The goals of the mechanisms is to:

● Entirely prevent congestion/disruption of fault free streams by 
faulty streams

● Enable unambiguous detection of faulty devices/prevent false 
positive detection

 It is assumed that a faulty box (end-station or bridge) send‘s arbitrary 
data at arbitrary times (babbling-idiot). 

 It is not assumed that some faulty transmissions are more “unlikely” 
than others, nor that some boxes fail “more unlikely” than others, etc.

 It is assumed that at most one box can fail at a time (single fault 
assumption).

 It is not a goal to “magically repair” faulty streams. These are 
considered as broken, faulty, non-trustworthy, non-repairable, lost 
[PERIOD]
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WHAT DOES NOT WORK FOR 
802.1QBV
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Token Bucket: Fault Free

Token bucket alone does not work for TAS
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Delayed Packets
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WHAT MAY WORK FOR 802.1QBV
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Part 1 - Timing

1. Ingress Windows

Extend the 802.1Qbv gate-states by an ingress open/close flag, i.e. ingress gate:

 Open: Accept consecutive started packets until next ingress close 

 Close: Discard consecutive started packets entirely

Implication: 
Common time for egress and ingress operation at the same port

2. Octet Limits

Add octet limits associated with ingress windows and common octet counter:

 Increase octet counter by octets of packets started after transition to open 
until associated octet limit is reached

 Cut through: Discard octets octet limit is exceeded

 Store and Forward: Discard packet if octet limit is exceeded 

 Clear octet counter and current octet Limit at transition to close
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Ingress windows
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Ingress Windows vs. Octet Limits

Both needed

Ingress windows (receiver) must be wider than egress packets (sender) to 
avoid false positive reactions:

 PTP clocks are not 100% equal, even in the fault free case

 802.1Qbv implementations may „narrow“ the configured event times

 Allowed variances of packet/octet duration (+-100ppm or more), 
preamble length, etc. before being rejected otherwise

 …

In case of faults, a sender can transmit more octets in one ingress window 
than expected before the end of the window is reached

 Octet count synchronized to packet reception can limit the exact number 
of octets in a window

 Windows sizes/expected number of octets can differ per window at one 
egress port  Each ingress window requires an associated octet limit

10



Fault Free Case
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Faults covered by Ingress Window
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Faults covered by Octet Discarding
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(Yet) Uncovered Faults …
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B3

… why this is a problem
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Part 2 – Masquerading

1. Ingress Windows

2. Octet Limits

3. Masquerading Filters

Associate forwarding information with each ingress window to:

 Unambiguously identify:

a. The entire scheduled path to the listener(s)

b. All scheduled egress queues on the path to the listener(s)

 Discard packets starting in ingress window in case of mismatch
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Faults covered by Masquerading Filters
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B1

B4

B3

Why local forwarding information (port map, 
etc.) would be insufficient
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Mapping the mechanisms to standard(s)

Octet Limits: Is MEF 10.3 the right tool?

 Specified to operate octet-accurate?

 Writable token/octet levels at ingress open/close events?

 Tokens added at rate=0 (i.e. not automatically added over time)?

 Red&green-only operation?

 Continuous operation for cut-through (or is the combination TAS+cut-
through+policing useless at all – at least Automotive use seems 
unlikely)?

Input Windows/Gate Events: 802.1Qbv? 

Masquerading Filters – Circuits & Stream Gates?
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Thank you for your Attention!
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