Urgency Based Scheduler – Status Update

Johannes Specht (Univ. Duisburg-Essen) Feng Chen (Siemens) Franz Josef Goetz (Siemens)

Contents

About

- This slide set results of joint work in progress of Siemens and University of Duisburg-Essen to:
 - Define <u>one</u> shaper proposal for both, automotive and industrial control use-cases
 - Enhance the proposal to become part of 802.1

This slide set

- Recap & Background
- Technical Update/Work in Progress
- Discussion Appreciated:
 - Implementation Complexity
 - Standardization in 802.1
 - Other topics?

RECAP & BACKGROUND

General Background Information for Industrial Automation Applications

Within industrial we have to differentiate two Systems:

Closed Systems

Typical used for "Closed-Loop-Applications" like motion control systems

- One network for one application this application is fixed
- Fix topology adapted to application
- Guaranteed QoS & guaranteed low latency by
 - Highly optimized scheduling
 - Harmonized transmission period
 - Coordinated windows

Computed in a "manager" device to meet high performance requirements

• Open Systems

Typical used for "Control-Applications" like assembly lines

- *Multiple* applications share one network
- Topology can change when applications are added, changed or removed at runtime
- Multiple transmission periods
- Guaranteed QoS & guaranteed low latency
- Requires hot network reconfiguration of a flexible traffic class
- Undesired side effects on already established control-data-traffic must avoided

One industrial network can also consist of "Closed" and "Open Systems"

Industrial Applications/ **Transmission Modes**

Typical exiting applications/transmission modes for control-data

- Event based transmission of control-data-streams • (knowledge about max rate)
- Periodical transmission of control-data-streams • (Talkers are not synchronized)
- Scheduled transmission of control-data-streams • (Talkers are synchronized)
- Scheduled and coordinated transmission of control-data-streams • (Talkers are synchronized)
- Seamless failover for high reliability • (Redundant transmission and receiving of control-data-streams)
- A time sensitive network for industrial automation has to support the typical application modes

Automotive Applications and Networks

Broad range of streams sharing one network

- Several stream types: Periodic, event- based, rate constrained (AV), ...
- Varying, application dependent, End-to-End latency requirements
- Some streams with safety requirements: 802.1CB, policing, ...

Small low speed topologies

- Rather one hundred end stations than thousands (or even more)
- Low link speeds (typical 100Mbit/s)
- Topology design driven by requirements on safety, economic wiring, physics, etc. not only high throughput

Need

- Best achievable mapping of streams, their characteristics and requirements ...
 - \rightarrow low resource blocking (e.g. less over-reservation)
 - ightarrow high utilization of wires

Automotive Network Engineering

Network Engineering

- Networks are completely scheduled before series production
- Involves multiple parties:
 - Different OEM divisions
 - Component suppliers delivering "building blocks" (e.g. brake- or steering-systems) comprising single end stations or partial networks
- Needs coordination between those parties during development

Need

- Small and simple interfaces between parties
- Low scheduling/network configuration dependencies across applications
- Avoid multiple "scheduling iterations"

Shaper Proposals

Presented in 802.1TSN

- UBS
 - Shaper proposal, primary for Automotive Systems
 - Univ. Duisburg-Essen, General Motors
- BLS
 - Shaper proposal, primary for Industrial Control Systems
 - Siemens

Goals of both proposals

- Support broad range of streams
- Guaranteed QoS guarantees & guaranteed latency
- Low planning/scheduling effort

Assumptions

- Merging both to an enhanced UBS variant fulfills Automotive <u>and</u> Industrial needs
- Better scalability from an implementer's perspective <u>without</u> loosing scalability from a user's perspective needs to be addressed

Uncertain

• What else is needed from the TSN group's perspective to progress further with the proposal?

UBS & BLS Proposals (As presented in 802.1TSN)

TECHNICAL UPDATE

Changes/Updates

- 1. Decouple Sub Priorities from Sub Shapers
- <u>Goals:</u>
 - Get rid of non-FIFO queue operation
 - Allow less Sub Priorities than Sub Shapers
 ... discussed on next slides ...
- 2. Replace Leaky Bucket with Token Bucket Algorithm
- <u>Goals:</u>
 - Maximize stream aggregation <u>without</u> undesired side effects (e.g. worsened latency)
 - Minimize the number of Sub Shapers
- <u>Assumption:</u>
 - Nearly equal implementation complexity of both algorithms (Leaky Bucket and Token Bucket)

... ongoing analysis ...

One sub priority – No Latency Mapping

Example

- 4 equal streams (max. rate, max. frame length) with different latency requirements
- 3 Hops (from device A to device D)

(No-)Mapping with one sub priority

Stream	Latency Req.	Max. Latency (calc.)
S1	1 ms	1.57 ms
S2	1.33 ms	1.57 ms
S3	1.66 ms	1.57 ms
S4	2.33 ms	1.57 ms

No Latency Requirement Mapping Possible
Per stream per hop latency defined by per port utilization
"Equalizes" stream latency

Other Parameters:

No Higher Traffic Class; Lower Traffic Class Max. Frame= 1544 Byte; Max. Frame of all Streams = 1000 Bit; Rate of all Streams = 10MBit/s; Link Speed = 100MBit/s; Store & Forward Operation Latency math found in http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

Latency Mapping: Many Sub Priorities

Example

- 4 equal streams (max. rate, max. frame length) with different latency requirements
- 3 Hops (from device A to device D)

Mapping with 4 sub priorities ("many")			
Stream	Latency Req.	Max. Latency (calc.)	
S1	1 ms	0.67 ms	
S2	1.33 ms	1.05 ms	
S3	1.66 ms	1.51 ms	
S4	2.33 ms	2.11 ms	

Latency Mapping by Sub Priorities Many sub priorities → fine grained latency requirement mapping

Other Parameters:

No Higher Traffic Class; Lower Traffic Class Max. Frame= 1544 Byte; Max. Frame of all Streams = 1000 Bit; Rate of all Streams = 10MBit/s; Link Speed = 100MBit/s; Store & Forward Operation Latency math found in http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

Nearly the same: Few Sub Priorities

Example

- 4 equal streams (max. rate, max. frame length) with different latency requirements
- 3 Hops (from device A to device D)

Mapping with 4 sub priorities ("many")			<u>Map</u>	oing with <mark>2 su</mark>	b priorities ("few")
Stream	Latency Req.	Max. Latency (calc.)	Stream	Latency Req.	Max. Latency (calc.)
S1	1 ms	0.67 ms	S1	1 ms	0.97 ms
S2	1.33 ms	1.05 ms	S2	1.33 ms	1.32 ms
S3	1.66 ms	1.51 ms	S3	1.66 ms	1.62 ms
S4	2.33 ms	2.11 ms	S4	2.33 ms	1.91 ms

Other Parameters:

No Higher Traffic Class; Lower Traffic Class Max. Frame = 1544 Byte; Max. Frame of all Streams = 1000 Bit; Rate of all Streams = 100MBit/s; Link Speed = 100MBit/s; Store & Forward Operation Latency math found in http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

Nearly the same: "mixed" Network

Example

- 4 equal streams (max. rate, max. frame length) with different latency requirements
- 3 Hops (from device A to device D)

Mapping with 4 sub priorities ("many")				<u>Mappin</u>
Stream	Latency Req.	Max. Latency (calc.)		Stream
S1	1 ms	0.67 ms		S1
S2	1.33 ms	1.05 ms		S2
S3	1.66 ms	1.51 ms		S 3
S4	2.33 ms	2.11 ms		S4

<u>Mapping with varying sub priorities ("mixed")</u>

Stream	Latency Req.	Max. Latency (calc.)
S1	1 ms	0.97 ms
S2	1.33 ms	1.22 ms
S3	1.66 ms	1.66 ms
S4	2.33 ms	1.85 ms

Other Parameters:

No Higher Traffic Class; Lower Traffic Class Max. Frame= 1544 Byte; Max. Frame of all Streams = 1000 Bit; Rate of all Streams = 10MBit/s; Link Speed = 100MBit/s; Store & Forward Operation Latency math found in http://www.ieee802.org/1/files/public/docs2013/new-tsn-specht-ubs-perfchar-1113-v1.pdf

Conclusions (1)

Latency Requirement Mapping requires sub priorities, BUT:

- Few sub priorities can "emulate" more along multiple hops
 →That's Ok Good mapping is more important on long paths than on short paths
- Mixed networks possible, i.e. limitations of bridges with one sub priority can be compensated by bridges with more sub priorities
- Limits of few sub priorities would only be reached in case of "aggressive" (close to the limits) latency requirements of all streams

Mapping with 4 sub priorities ("many")

Stream	Latency Reg	Max. Latency (calc.)	Aggressive Latency Req.
S1	1 ms	0.67 ms	0.67 ms
S2	1.33 ms	1.05 ms	1.05 ms
S3	1 .66 ms	1.51 ms	1.51 ms
S4	2.33 ms	2.11 ms	2.11 ms

 \rightarrow Expected to be rather unlikely in real systems

Conclusions (2)

Number of Sub Priorities

- Limitations like number of classes in AVB-Gen1 seem to be reasonable, e.g.:
 - One sub priority mandatory
 - Two sub priorities recommended (explicit or implicit stated)
 - More sub priorities possible
- Exact number could be managed by profiles

Sub Priorities vs. Traffic Classes

- Latency mapping requires independent per port priority configuration, e.g.
 - One stream can belong to ...
 - <u>two</u> different sub priorities at ...
 - <u>two</u> different egress ports of a bridge
- Multiple UBS classes without internal sub priorities wouldn't be flexible enough for this requirement, doing this via PCP encoding/decoding (as currently specified) is not possible
- \rightarrow Per port sub priority association could be located in the filtering database "close" to port maps

Thank you for your Attention! **Questions, Opinions, Ideas?**

Johannes Specht

Dipl.-Inform. (FH)

Dependability of Computing Systems Schuetzenbahn 70 Institute for Computer Science and Business Information Systems (ICB) Faculty of Economics and **Business Administration** University of Duisburg-Essen

specht@dc.uni-due.de http://dc.uni-due.de

Room SH 502 45127 Essen GERMANY T +49 (0)201 183-3914 F +49 (0)201 183-4573

Feng Chen

I IA ATS TM5 1 Industry Automation Division Industry Sector Siemens AG

chen.feng@siemens.com

Gleiwitzer Str. 555 90475 Nuernberg GERMANY T+49 (0) 911 895-4955

