SIEMENS

Registration and Reservation / Signaling

New Protocol Version supporting Decentralized Organized Networks

> <u>Marcel Kiessling – Siemens AG</u> Franz-Josef Goetz – Siemens AG Juergen Schmitt – Siemens AG

Our Assumptions TSN for Industrial Automation

Required functionality for industrial TSN networks

- Industrial networks are typically structured hierarchical networks
- Network segments must have the ability to work independent
- Separating and joining of network segments must be possible without losing connectivity within the segment
- After power up dynamically communication relation will be establish
- The network must have the ability to add and remove network components and end stations add at every time
- The network is shared between multiple control applications and other services
- Control applications and services can go up and down at every time
- The network must guarantee most possible independence between different control applications
- \Rightarrow Static control applications mean not at all a static network configuration!
- ⇒ Static centralized network configuration will not fulfill all requirements for industrial automation networks!

\Rightarrow For industrial automation networks there is still a need for

- dynamic centralized TSN network configuration and for
- dynamic decentralized TSN network configuration

Thoughts about centralized and decentralized organized Industrial Networks

1. Static Centralized Organized Networks

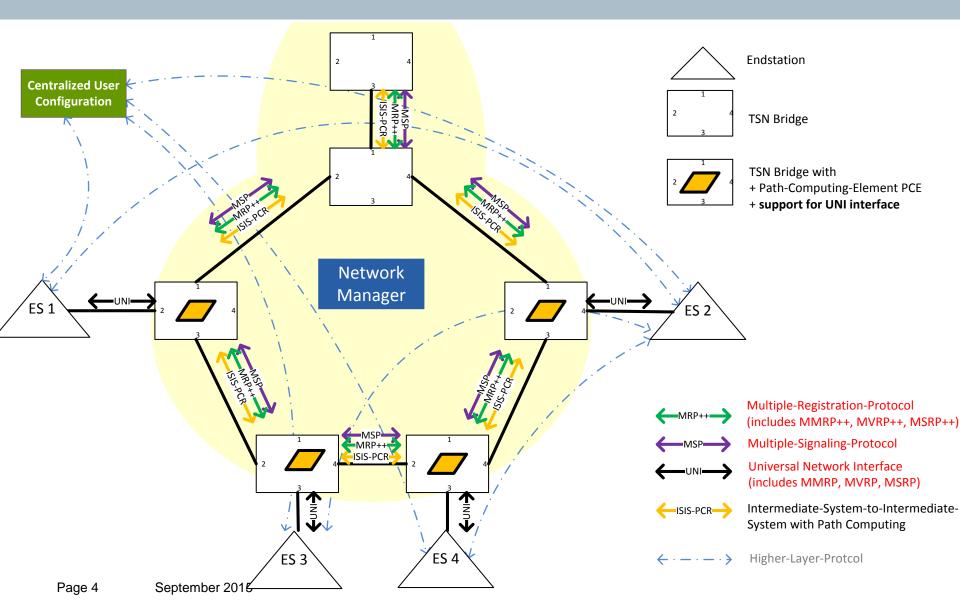
• Within industrial automation there are a lot of established static centralized organized systems (e.g. EtherCat, PROFInet IRT, VARAN, ...).

SIEMENS

2. Dynamic Centralized Organized Networks

- SDN in data centers
- MPLS in backbones

3. Decentralized Dynamic Organized Networks


- Ethernet and Internet are well known decentralized organized Systems
- AVB is also a decentralized organized system

With introducing TSN in industrial automation, vendors are also requesting for a dynamic centralized or decentralized organized communication network.

One example is the ongoing discussion about OPC_UA over TSN! See: <u>http://www.ieee802.org/1/files/public/docs2015/tsn-munz-requirements-for-tsn-in-manufacturing-0515-v01.pdf</u>

Example for a Decentralized Organized Network

Distributed Path Calculation (with PCE's) Protocol based Registration (MRP++) and Reservation / Signaling (MSP)

SIEMENS

Reasons for splitting Registration and Reservation

Registration

- Network attributes have no direction
- Network attributes are not modified by registration
- Network attributes are typical valid over long time
- Huge amount of data caused by stream attributes
- Support for higher number of network attributes e.g. streams
- Extended network attributes to support new TSN features (e.g. seamless)
- Flexible network attribute combination for different features (e.g. streams)

Reservation / Signaling

- E2E signaling of current status with direction (upstream, downstream)
- Merge information along the path between source and sink
- Status can change more often -> requires a higher update rate
- Only few data e.g. status
- Support for higher number of network attributes e.g. streams
- Support new features e.g. rate constrained traffic class for services with bandwidth allocation at runtime

Features of MRP++

- Only used for network attribute registration
- Network attribute forwarding along given path (context)
- Support for higher number of network attributes by
 - Fragmentation
 - Support for checksums
- Flexible encoding of network attributes (TLV like)
- One logical MRP++ PDU which carries the information of all MRP++ applications
 - Multiple VLAN Registration Protocol: MVRP++
 - Multiple MAC Address Registration Protocol: MMRP++
 - Multiple Stream Registration Protocol*: MSRP++
- * MSRP: Multiple Stream <u>Reservation</u> Protocol

Page 6 September 2015

Features of MSP

- Only used for network attribute reservation / signaling
- Status and data forwarding along given path (context)
- Merge / aggregate status and data along the path (upstream, downstream)
- Flexible encoding of status and data (TLV like)
- Supports different reservation / signaling applications
 - MSSP: Multiple Stream Signaling Protocol
 - Accumulated <u>min. and max.</u> Latency (Downstream)
 - Required Latency (Upstream)
 - Stream send state (Ready/Failed) (Downstream)
 - Stream receive state (Ready/Failed/ReadyFailed) (Upstream)

• .

Features of UNI

- Common interface for end stations and edge bridges to provide network organization independence
- Backward compatibility to current version of MRP and its application:
 - Multiple VLAN Registration Protocol: MVRP
 - Multiple MAC Address Registration Protocol: MMRP
 - Multiple Stream Reservation Protocol: MSRP
- End stations and edge bridges have to support the MPR participants functionality of the current MRP version

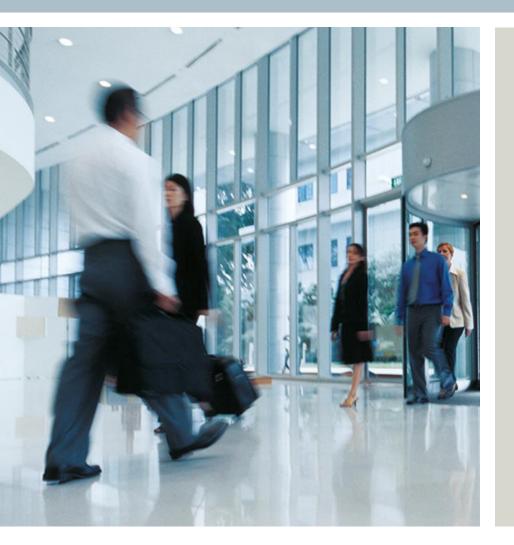
Request for new PAR supporting Decentralized Organized Networks

Scope of the new project:

• Support for more streams. The current worst case limit is less than 500 streams; there are use cases that require two orders of magnitude greater than this.

SIEMENS

- Mechanisms that allow Stream Reservation class (SR class) parameters to be configured
- Deterministic stream reservation convergence by separating registration and reservation / signaling.
- Inclusion of additional mechanisms in the stream reservation protocol that support new TSN features, such as higher reliability, latency requirements, and report latency changes due to network reconfiguration.
- Support for higher layer streaming sessions, remain compatibility to RSVP.
- User Network Interface (**UNI**) for routing and reservations to provide network organization independence for end stations and edge bridges.



Thank you for your attention!!!!!

Page 10 September 2015

SIEMENS

Authors

Marcel Kiessling

Innovation Manager Siemens AG PD PA CI TI Gleiwitzerstr. 555 90475 Nürnberg Phone: +49 (911) 895-3888 E-Mail: kiessling.marcel@siemens.com

Franz-Josef Goetz Senior Key Expert "System Communication" Siemens AG PD TI ATS TM 4 2 Gleiwitzerstr. 555 90475 Nürnberg Phone: +49 (911) 895-3455 E-Mail: franz-josef.goetz@siemens.com

Jürgen Schmitt Architect Siemens AG PD TI ATS TM 4 2 Gleiwitzerstr. 555 90475 Nürnberg Phone: +49 (911) 895-5338 E-Mail: juergen.jues.schmitt@siemens.com