

Stream Filtering and Policing for Industrial Control Applications

IEEE 802 Plenary Meeting - March 2015, Berlin Feng Chen, Franz-Josef Goetz Siemens AG

Contents

- 1. Recap: Constraints on Industrial Control-Data Streams (CDS)
- 2. Stream Filtering and Policing for Industrial Control Applications
 - per-stream filtering and policing with a jitter-aware metering algorithm
 - concept of per-class filtering and policing

Recap: Constraints on Industrial Control-Data Streams

Preferred Topology

daisy chain (a line or a ring)

End-station (talker)

- periodic generation and transmission at talkers (like TAS)
- fixed frame size for a stream
- one transmission period per class for all talkers
- fixed transmission order (typically in a burst)
- may be synchronized and transmission is coordinated with other talkers

TSN bridges

- Strict Priority (SP) with highest priority for control-data streams
- pre-emption for highest priority queue (express traffic class)
- cut-through for control-data streams
- Non time-based policing and forwarding assumed in this presentation

Further constraints resulting from control application requirements

maximum E-2-E delay must be lower than one transmission period

Proposed Uses of Stream Filtering and Policing for Industrial Control Data Streams

- Per-Stream filtering and policing
- Pc Per-Class filtering and policing

Per-stream filtering and policing

- perform per-stream bandwidth enforcement to ensure conformance with traffic contract
- detect and limit faulty stream to protect transmission of other non-faulty streams on egress
- filter out non-conformant frames, e.g. over-sized frames

Per-class filtering and policing

perform per-class bandwidth enforcement for control-data classes on egress port

Jitter Behavior of Industrial Control Data Streams (1)

Jitter of stream

- is defined as the variation in delays of one stream measured on the ingress port of a specific bridge
- is quantified by Max. Delay Min. Delay, with a constraint stream jitter < T (talker transmission period)
- accumulates along the stream transmission path as hop count increases (typically minimum on edge ports)

Jitter Behavior of Industrial Control Data Streams (2)

Problem: jitter causes variation in the frame interval t, leading to temporal overload at t < T. If metered with talker bandwidth reservation, normally jittered frames may be dropped.

Solution: increase bucket size to allow max. temporal overload caused by jitter, with a value derived from the minimum frame interval $t_{min} = T - (max. delay - min delay)$

Proposed Per-Stream Policing Algorithm for CDS

MEF SRTCM
bandwidth for excessive traffic
only from Yellow bucket
at least for a complete frame size
best effort

Mark Red

Difference
Meaning of yellow tokens
Used tokens of yellow frames
Range of EBS
Transmission of yellow frames

bandwidth for jitter compensation
from Green and Yellow buckets
allowing smaller than a frame size
(required for edge ports)
kept in highest priority

Policing of Jittered Stream with Modified SRTCM

Configuration according to traffic contract made by the stream talker

Jitter buffer: bucket size can be derived from minimum frame interval caused by jitter tmin

Policing of Faulty Stream with Modified SRTCM

The modified SRTCM

- ensures that normally jittered frames (arriving within jitter range) will never be discarded.
- guarantees that within any observation interval t, the amount of conformant frames (incl. Green and Yellow frames) will not exceed information rate times t plus the bucket size (Green+Yellow buckets)

=> determine the capability of detecting faulty streams with excessive traffic

is not yet completely resumed, thus marked as Red

Concept of Per-Class Policing for CDS

CDS₁

Problems on egress port

- multiple jittered streams merging on the same egress port and feeding in the same queue may cause unexpected temporal overload, e.g. an excessive long burst
- need a bandwidth control mechanism on egress port for CDS

Per-Class policing

- Perform bandwidth enforcement for CDS on a per-class base
- Run a policing algorithm in color-aware mode to handle Green and Yellow frames declared by preceding per-stream policer
- Per-class bandwidth allocation could be derived from those for per-stream policing that merge into the same egress queue

CBS: Committed Bucket Size, EBS: Excessive Bucket Size

Thank you for your attention!

Feng Chen

PD TI ATS TM5 1

Gleiwitzer Str. 555

90475 Nürnberg

Phone: +49 (911) 895-4955

Fax: +49 (911) 895-3762

E-Mail: chen.feng@siemens.com

siemens.com/answers