A look at Securing the Automotive Ethernet

Robert Moskowitz
HTT Consulting
July 2016
View of the Network and components

- Two classes of networks
 - Safety Network
 - Infotainment Network

- All Ethernet networks bridged together
 - As one Network
 - Any filtering between 'segments' would have to be by MAC (Layer 2) addresses
 - Excludes diagnostic (DLC) port and WiFi
 - These are separately isolated from ALL other Auto networks by Firewalls and applications
Purpose of this talk

• Review of potential Automotive Ethernet network design and components
• Need for Security at OSI Layer 2 (MAC)
• Identify areas of mismatches between 802.1 standards and constraints of the presented networks.
• Discussion on how to resolve presented challenges.
Automotive Ethernet(s)

Possible Auto Ethernet with 802.1CB safety ring(s), plus Infotainment/WAN switched segment. All bridged via a Gateway that also brings in CAN and LIN.
Automotive ECUs

Typical ECU with internal switch
Automotive ECUs

Main ECU with internal switch
Automotive ECUs

Simple ECU
Trust in the Automotive Ethernet

• Only trusted devices
 – How to build trust and maintain it
 • SHE component on CANbus-FD uses knowledge based enrollment and shared master keys
 – Plug-n-Play of consumer devices NOT supported
 • No neat kickstarter LIDAR permitted!
 • Consumer supplied devices on WiFi or USB only
 – Component replacement by certified devices only post production changes
 • New or used
Trust in the Automotive Ethernet

• All trusted devices will be OEM certified
 – Including ALL field installed devices
 – Trusted to obtain OEM certificates for trusted operation

• Field replacement will ONLY occur with active connection to the OEM Backend security services
 – Via wireless or diagnostic connection
 – No backend connection? Move vehicle to site with it.
Trust in the Automotive Ethernet

- Isolate non-trusted devices
 - People will attach devices to the Ethernet if for no other reason than it is there
 - They can inject DDos events
 - Which can be detected and mitigated by trusted devices
 - And can attack and corrupt trusted devices
 - There is little defense against a trusted, yet compromised device
Trust in the Automotive Ethernet

• Protection for all traffic at all layers
 – Not all messaging is IP-based
 • Nor is all IP messaging assured to be protected
 – Integrity is adequate for some traffic, Confidentiality will be required for some
 • Note even a potential confidentiality requirement for camera feed
 – Ride share
 • Confidentiality for all has performance cost?
 – Plus Ethernet control is non-IP
 • E.G. TSN control plane
Trust in the Automotive Ethernet

• Cryptographic agility to meet
 – International mandates
 • E.G. China requirements
 – Already providing SMS4 in existing vehicles
 – Advancements in attacks and protections
Proposed Security Solutions

- **IEEE 802.1AE**
 - SHE provides AES but not GCM
 - No crypto components for embedded switches
 - Non-trivial cost increase to add crypto

- **IEEE 802.1X**
 - Need *fast* enabling at engine start

- **IEEE 802.1AR**
 - Device supplier buy-in
 - IETF anima protocols for enrollment?
 - EDDSA support. Plus Auto OIDs
Recommended Solution Components

- IEEE 802.1AR X.509 Device Identity for separate PKIs for Supplier(s) and OEM
 - Supplier certificate for 'Factory Default' Identity
 - Maintains Supplier involvement with parts
 - And provides reused part initialization methodology
 - OEM certificate is for operational use
 - Third level of PKI possible for Infotainment products
 - Separation of domains of trust
 - Third party Diagnostic units could have LDevID from each OEM!
Challenges with IEEE Recommendations

• Can embedded switches function similar to provider bridges?
 – 802.1AEcg addendum

• If so can 802.1X flow 'through' switches from ECU to Controllers and/or Gateway?

• What are the affordable options?

• Only AES-GCM in 802.1AE
 – SMS4 support? Is GCM available with SMS4?
IEEE 802.1AE across Provider Bridges 802.1AEcg?

If ECU switches could function as Provider Bridges, then desired functionality achieved?
Challenges with IEEE Recommendations

• VLAN priority bits used for safety network QOS
 – These are within encrypted payload
 – Each VLAN a 1AE Communications Association with Security Channel identified VLAN
 • Priority bit = SCI port number?
VLAN prioritization across Provider Bridges

- If encrypted, VLAN priority can be mapped into SCI port number
Next steps

• Work with 802.1 TG to crystallize any needed additions to the 802.1 security standards
• Follow through with appropriate work efforts
Questions?