RESTful APIs and 802.1Qcc

Rodney Cummings
National Instruments
Agenda

• What is a RESTful API?
• How can RESTful apply to 802.1Qcc?
• What is CoAP?
Premise of this Presentation

• Configuration of TSN requires protocol(s)
• Past TSN work has focused on invention
 • Create a new protocol from scratch
 • Publish in 802.1 or elsewhere, but that’s just the 1st step
 • Momentum requires open source, tools, OS integration, etc
 • Challenging to find companies who are willing to invest
 • MRP and IS-IS struggle to this day
• What if we could find an existing protocol?
 • millions of active users… huge software development community…
 plenty of open source… ships with every operating system…
 • Maybe The Internet can help
What is HTTP?

- Foundational protocol of The Internet (web)
- Request/response (client/server) using TCP
 - HTTPS: HTTP Secure using TLS (SSL)
- Very simple, with two fundamental concepts
 - Resource: Identified with URI
 - Methods: Request is stateless
 - GET: get resource’s data
 - POST: create a new subordinate of resource (e.g. Twitter post)
 - PUT: replace the resource’s data (create if doesn’t exist)
 - DELETE: delete resource
What is REST? What is RESTful API?

- **REST**: Architectural style for designing an API
 - Stateless: Each method executes on its own (like a browser)
 - Client/server, layered: No reliance on intermediaries
 - Most of this style is built into HTTP itself

- **RESTful API**: Use HTTP for an API (instead of website)
 - Other protocols are possible (e.g. CoAP), but HTTP assumed
 - Data (media type) is typically JSON
 - No formal standard, but development tool support is huge
 - E.g. [PRMD](#) takes a JSON schema and creates a full API user manual
Benefits of RESTful API (1 of 3)

• Creating a standard is easy
 • Many design guides and tools available
 • Step 1: Create JSON schema
 • Such as from YANG
 • Step 2: Specify rules for URI and HTTP
 • ~20 to 40 pages
 • Mostly copy & paste from other APIs
• That’s it… done!
• Most RESTful APIs document on the web
 • E.g. GitHub, Twitter, Stripe, Facebook, …
Benefits of RESTful API (2 of 3)

• Creating a client is easy
 • Get started using simple command line (cURL)
 • Built into most programming languages
 • E.g. Stripe documentation has examples for Go (OMG!)

• Creating a server is easy
 • If your product runs a web server, you are > 90% done
 • Many industrial devices already run web servers
 • Most software teams are already familiar with HTTP tools
Benefits of RESTful API (3 of 3)

- **Longevity**
 - HTTP is not going away anytime soon

- **Security**
 - Based on TLS (HTTPS), and kept up to date

- **Transport**
 - TCP provides reliable delivery of large data
 - Scalable
 - Bridges and routers just forward to destination

- **Server implicitly supports multiple simultaneous clients**
How can RESTful apply to 802.1Qcc?
Qcc Fully Centralized

- Use as frame of reference
RESTCONF for Management

- RESTCONF is a RESTful API for managing YANG data
 - Client is CNC (aka NMS)
 - Server is a bridge or router (network infrastructure)
- HTTPS GET/PUT used to read/write managed objects
- Server supports JSON (typical), XML, or both

- Draft in IETF NETCONF working group
 - WG state = Submitted to IESG for Publication (as RFC)
- YANG modules in work for 802.1Q and 1588
 - 802.1AS YANG can be done as augment of 1588 YANG
RESTCONF for Management

• (red shows usage of RESTful APIs)
RESTful API for CNC

• Remember those steps for creating a standard?
 • Step 1: Create JSON schema
 • 1-1 translation from YANG specified in Qcc UNI (99.2)
 • Step 2: Specify rules for URI and HTTP
 • E.g. Syntax for Talker, Listener, and StreamStatus in URI
 • That’s it… done!
 • Scalable, so 1000’s of streams

• API can build on top of Qcc’s data model as needed
 • E.g. Time-sync UNI proposal

• CNC supports multiple clients (CUCs)
RESTful API for CUC ↔ CNC

- (red shows usage of RESTful APIs)
What is the CUC?

• In most time-sensitive applications a human uses a software entity (tool) to:
 • Discover: End stations w/ resources & capabilities
 • Design: What goes where in the distributed application
 • Program: Write/debug software components for application
 • Connect flows: Input to output, Code to I/O, code to code, …
 • Control: Start/stop state machines

• Plug&play (i.e. no human) is a 100% software problem

• What do these tasks have in common?
 • Largely unrelated to the network
 • Requirements for code and I/O are more complex than network
CUC is the Application (User) Tool

- If/when flows occur over network, TSN is relevant
- From CNC’s perspective, CUC makes most decisions
 - CUC knows talker/listeners, MaxLatency requirements, etc
 - Talker/listener end stations can be ‘dumb’
- Today’s CUCs have their own protocols to end stations
 - Qcc is generally not relevant to those protocols
 - Exception: TrafficSpec, InterfaceCapabilities/Configuration
- Two approaches to integrating TSN into CUC protocol
 1. Create CUC protocol v2 to intimately integrate TSN
 2. Leave CUC protocol as-is; Configure TSN separately
RESTful API for TSN in End Station

- RESTful is great for option 2: Configure TSN separately
 - RESTful API is **not** a new CUC protocol
 - Opposite goal: Add TSN with no change to CUC protocol
- Client is the CUC
- Server is talker/listener end station
- Goal is to setup TSN for streams that CUC is connecting
 - MaxLatency and other TSN requirements decided by CUC
 - Typically driven by physical input to output time
RESTful APIs as Complete TSN Solution

- (red shows usage of RESTful APIs)
What is CoAP?
CoAP

• “I have a constrained product that cannot run HTTPS. What do I do?”
 • Where “constrained” means small CPU / memory / power

• IETF CoRE working group: Constrained RESTful
 • CoAP (RFC 7252): binary HTTP equivalent
 • CBOR (RFC 7049): compact binary JSON equivalent
 • Including YANG mapping (draft)
 • CoMI (draft): compact RESTCONF equivalent

• Used today for low power wireless (e.g. 6TiSCH)
 • Mapping for IPv6 UDP DTLS; Open source available

• Clear option for TSN
Thank you