
Blocking of misbehaving streams

Daniel Zebralla

daniel.zebralla@continental-corporation.com

IEEE 802.1 Interim, May 2016, Budapest

www.continental-corporation.com Corporate Systems & Technology

mailto:Daniel.zebralla@continental-corporation.com

Public

IEEE 802.1 TSN TG

Acknowledgements

2Daniel Zebralla, Continental AG
24 May 2016

Thanks to the following individuals who contributed to this presentation

› Jens Bierschenk

› Christian Boiger

› Soheil Samii

› Johannes Specht

› Helge Zinner

Public

IEEE 802.1 TSN TG

Motivation
Automotive emphasized the need for complete stream blocking earlier

3Daniel Zebralla, Continental AG
24 May 2016

From http://www.ieee802.org/1/files/public/docs2013/new-tsn-jochim-ingress-policing-1113-v1.pdf

(“Per Class”-cases omitted):

http://www.ieee802.org/1/files/public/docs2013/new-tsn-jochim-ingress-policing-1113-v1.pdf

Public

IEEE 802.1 TSN TG

Motivation
Automotive: Babbling sensor

4Daniel Zebralla, Continental AG
24 May 2016

Bridge

25 Mbit/s

Bridge
10 Mbit/s

Sensor

B

100 Mbit/s 75 – 100 Mbit/s

Sensor

A

35 Mbit/s

0 – 25 Mbit/s

Sensor

A

25 Mbit/s
Sensor

B

Normal operation

› Assuming 100 Mbit/s, everything’s fine

Babbling case

› Sensor A is stuck at sending

› Sensor A sends junk (probably no

sensible data, thus grey color)

Public

IEEE 802.1 TSN TG

Motivation
Automotive: Babbling sensor

5Daniel Zebralla, Continental AG
24 May 2016

Bridge

100 Mbit/s
Sensor

A

25 Mbit/s
25 Mbit/s

Sensor

B

10 Mbit/s

Filters

Bridge

100 Mbit/s
Sensor

A
25 Mbit/s

25 Mbit/s
Sensor

B

Mitigation using Qci D1.1

› A’s bandwidth is limited

› Still, 10 Mbit/s of probably junk or

invalid data is sent

› This could lead to further errors down

the line (cf. fault  error  failure

propagation)

Blocking proposal

› A’s stream is blocked at the bridge

› Bridges/ECUs down the line are

relieved from handling the invalid data

(the failure is contained)

› The overall system can transition into a

defined state, “limp home”-mode

Filters

Public

IEEE 802.1 TSN TG

Motivation
Automotive sensor networks

6Daniel Zebralla, Continental AG
24 May 2016

Stream blocking is necessary because …

› … autonomous driving functions will require defined states in the network at all times

› … lots of raw sensor data will get merged from a multitude of sensors

› … erroneous input may cause a drop in environmental model quality

Public

IEEE 802.1 TSN TG

Motivation
From the PAR

7Daniel Zebralla, Continental AG
24 May 2016

“Policing and filtering functions include the detection and mitigation of

disruptive transmissions by other systems in a network, improving the

robustness of that network.”

 From my interpretation, “mitigation” also means having a possibility to silence

the disruptive transmission

Public

IEEE 802.1 TSN TG

Comments against D1.1 regarding stream blocking

8Daniel Zebralla, Continental AG
24 May 2016

Re: Editors Note. Keep it simple and do not add the envisaged actions. In particular

automatically closing down ports would have to be approached exceedingly cautiously. I

don't see anything in the PAR that extends scope that far.

Remove Editor's Note and go with what we have.

#8 (Mick Seaman)

Suggested Remedy:

It should be possible to drop streams or close a port based on detected misbehavior of the

link partner.

Add an additional mechanism that can force the gate status to closed. This allows to

configure either that a stream, several streams, or all traffic is dropped. It should be

possible trigger the "force gate closed" by all defined mechanisms that detect misbehavior

(e.g. max SDU, RED, blocked by stream gate). The gate instances associated with a "force

gate closed" event, triggered by a particular detected misbehavior of a link partner, should

be configurable.

#28 (Christian Boiger)

Suggested Remedy:

Public

IEEE 802.1 TSN TG

Comments against D1.1 regarding stream blocking

9Daniel Zebralla, Continental AG
24 May 2016

I would like to see the possibity to completely block misbehaving streams once an error (or a

defined number of errors in a certain time frame) have occurred.

Add additional mitigation options (in adition to drop option):

1) block stream_identifier (until reset, until timeout, until new reservation,....)

2) close a port

3) ...(more) ?

add-on to e): ...Frames that fail a filter are discarded.... and their corresponding stream_identifier

specifications may be added to a "block table"

Options:

1) if the filter is violated once then the stream_identifier specification shall be added to the "block

table" (automotive use case: a diagnosis port shall never be used while driving – if packets were

received from this port an attack may be in progress)

2) if the Maximum SDU size/Flow meter instance identifier is violated n times in m seconds then

the stream_identifier specification shall be added to the block table

3) ...(more)?

add a new filter specification under item e)

4)

block table. Frames containing stream_identifier specifications inside this table will be dropped.

Entries into this table can be added dynamically (see e) or static by configuration.

#35 (Helge Zinner)

Suggested Remedy:

Public

IEEE 802.1 TSN TG

Comments against D1.1 regarding stream blocking

10Daniel Zebralla, Continental AG
24 May 2016

One mitigation option that has been discussed in the TSN group in the past is the requirement to

allow multiple (statically) configurable mitigation options (i.e., what shall the bridge/endstation do

in case a stream violates its timing and/or bandwidth contract). In the list of options, we should

include "blocking the stream" and "blocking the (ingress) port," as these are mechanisms to

isolate faults, for example in safety-critical automotive systems.

Add blocking table that can be modified at runtime based on what is detected by the stream

filters/input gates. The blocking table can have the same parameters as what is used to identify

streams. In case a stream violates its timing or bandwidth contract (or any other property we

decide to filter on, e.g., maximum payload size), an entry is added to the blocking table to prevent

all future frames of that stream to be forwarded.

#40 (Soheil Samii)

Suggested Remedy:

Public

IEEE 802.1 TSN TG

Approach with a “blocking table”

11Daniel Zebralla, Continental AG
24 May 2016

stream_identifier specification*

127

22

14

17

…

*

<null>

…

<null>

Please wait for the next slide to see some assumptions

*) The simple numbers are just to indicate different identifiers

Public

IEEE 802.1 TSN TG

Approach with a “blocking table”

12Daniel Zebralla, Continental AG
24 May 2016

Assumptions

› One table per port

› The tables are empty on startup/reset

› Table is checked from top to bottom with “first match wins”

› This needs to be fast, maybe a smarter implementation would be needed

› Complete closing of a port can be achieved with adding a wildcard as stream_identifier

specification

› Table entries can be added/modified/removed via configuration as well

› e.g. based on time

Public

IEEE 802.1 TSN TG

Discussion

13Daniel Zebralla, Continental AG
24 May 2016

› Is this function reasonably achievable (complexity)? Opinion of semiconductors?

› To reduce complexity, wildcards in the blocking table could be forbidden (an individual

stream_identifier could then only exist at most once per table). Complete port blocking

would then need to be realized differently.

› What’s the minimum length (rows) which a “blocking table” must support? E.g. total # of

streams in the network. This is low for automotive, but could get high for professional A/V

and maybe industry automation.

› Suggestion: Let this be determined via profiles, e.g. by AVnu

› Is the possibility to block streams of interest for industry automation people as well?

› Is unblocking of a stream/port after a certain time of interest for others as well?

› Where should the check if a stream is blocked happen? Compare figure 8-12.

› Alternative approaches for stream/port blocking besides “blocking table”?

› See for example Christian’s comment #28

Public

IEEE 802.1 TSN TG

Daniel Zebralla, Continental AG

24 May 2016

14

Thank you
for your attention!

